
Batched Sparse Matrix Multiplication for 
Accelerating Graph Convolutional Networks

Yusuke Nagasaka†, Akira Nukada†, Kojima Ryosuke‡, Satoshi Matsuoka�,†

†Tokyo Institute of Technology
‡Kyoto University

�RIKEN Center for Computational Science



Graph Convolutional Networks (GCNs)

■ “Graph” is input data of neural network
– Chemical compounds and protein are expressed as “graph”
– Knowledge graph

1 Quoted from https://arxiv.org/pdf/1711.05859.pdf

https://arxiv.org/pdf/1711.05859.pdf


Formulation of Graph Convolution

2

!" =$
%
&",% (% )

Feature

Adjacency matrix
1 0 0 0 0
0 1 0 0 0
1 1 1 1 0
0 0 1 1 1
0 0 0 0 1

A=

Y = AXW

1

2

3
4

5

Input (Graph structure and features)

MatMul and SpMM

GraphConvolution (Y, A, X, W, bias)

for b ← 0 to batchsize
do for ch← 0 to channel

do U ← MatMul (X[b], W[ch])
B ← Add(bias[ch], U)
C[ch] ← SpMM (A[b][ch], B)

Y[b] ← ElementWiseAdd(C)

Execute many SpMM kernels.
Each operation is  independent of 
each other.



Performance Issues of GCNs Applications

■Many small computing kernels occupy the execution time
– GEMM, Sparse-Dense Matrix Multiplication (SpMM)
■ Launch overhead of repeated CUDA kernels is not negligible

– Not clear how to develop batched (small) sparse matrix routine
■ Load balance issue

– Number of nodes / sparsity of graph varies by input graphs
■ Occupancy issue

– Require architecture specific kernel

■ How to efficiently compute tens or hundreds of small SpMMs?

3



Contribution

■ Batched approaches for SpMM on GPU to improve the performance of 
GCNs applications
– Sub-Warp-Assigned (SWA) SpMM for SpMM on small matrices
■ Support both SparseTensor and CSR

– Batched SpMM
■ High occupancy and utilization of fast shared memory
■ Reduce the overhead of CUDA kernel launches
■ Develop routines both for SparseTensor and CSR

– Execute tens or hundreds small SpMM by single kernel
– Significant performance boost
■ Up to 9.27x speedup compared to Non-batched approaches for SpMM
■ Up to 1.59x speedup for training and 1.37x speedup for inference on GCNs application

4



Sparse Matrix Format

■ Compressing needless zero elements
– Storing only non-zero elements
– Reducing memory usage and computation

■Many formats have been proposed
– Being suited to architectures and given matrices

6



0 0

0 0

0 0

0 0

27 30

21 24

0 0

36 40

Implementation of SpMM in TensorFlow

■ COO-like sparse matrix format
– Array of {Row, Column} ids

■ SparseTensorDenseMatmul
– 1 CUDA thread for 1 mul-add operation
– nnz * nDense threads
– Load-balanced workload
– Addition is done by atomicAdd
■ Expensive on global memory

7

1 2

3

4

1 2 3 4

0 0 1 30 3 1 2

value

id

5 6

7 8

9 10

11 12

1 2

3

4

atomicAdd

1 2 3 41 2 3 4

5 6 11 12 7 8 9 10

5 6 22 24 21 24 36 40

0 1 2 3 4 5 6 7

Thread ID

mDense

nDense Output Matrix



Sub-Warp-Assigned (SWA) SpMM

■ Assign subWarp to each non-zero element
– subWarp is set as power of two
■ Division and modulo operations by executing low-cost bit operations

– Reduce instructions for memory access to same non-zero element

8

SWA_SpMM (C, A, B, subWarp)
// set matrix C to O
i← threadId
nzid← i /subWarp
rid ← idsA[nzid ∗ 2]
cid← idsA[nzid∗2+1]
val← valuesA[nzid]
for j ← (i % subWarp) to nB by subWarp

do Atomic (C[rid][j] ← C[rid][j] + val ∗ B[cid][j]) 

1 2

3

4

5 6

7 8

9 10

11 12

subW
arp

subW
arp

Thread

Thread
Thread

Thread

Thread

Thread
Thread

Thread

27 30

atomicAdd()



Sub-Warp-Assigned (SWA) SpMM for CSR

■ Assign subWarp to each row of input sparse matrix
– Reduce instructions for memory access to same non-zero element
– Atomic-free addition to output matrix

9

SWA_SpMM_CSR (C, A, B, subWarp)
// set matrix C to O
i← threadId
rid ← i / subWarp
for nzid← rptA[rid] to rptA[rid + 1]

do cid← colidsA[nzid]
val← valuesA[nzid]
for j ← (i % subWarp) to nB by subWarp

do C[rid][j] ← C[rid][j] + val * B[cid][j]

1 2

3

4

5 6

7 8

9 10

11 12

subWarp

Thread

Thread

Thread

Thread

5 627 30subWarp Thread

Thread



Efficient Use of Shared Memory

■ Utilize shared memory for output matrix
– Reduce the overhead of CUDA kernel launch for 

initializing output matrix
– Hardware support for atomic operation on shared 

memory

■ Cache blocking optimization for larger inputs
– Divide the output matrix along the column
■ Larger output matrix can be placed on shared memory
■ Also improve the locality of memory access to input dense 

matrix

10

Threads

SM

Input Matrix (sparse)

Input Matrix (dense)
Output Matrix (dense)

Global Memory

Shared Memory

(a) For small matrix (b) Cache blocking 
with SparseTensor



Efficient Use of Shared Memory for CSR

■ Each subWarp keeps its output row (= nB)
– Not need to keep whole output matrix (= mA * nB) 

by each thread block

■More thread blocks for larger mA
– subWarp * mA > TB
– Row-wise division of input sparse matrix

■ Cache blocking for wider dense matrix
– TB / subwarp * nB > 32KB
■ Capacity of shared memory is 32KB
■ TB is thread block size

– Improve the locality of memory access to input 
dense matrix

11

(c) CSR for larger sparse matrix (d) CSR for wider dense matrix

Threads

SM

Input Matrix (sparse)

Input Matrix (dense)
Output Matrix (dense)Shared Memory



Batched Algorithm for SpMMs

■ 1 CUDA kernel manages multiple SpMMs
– Reduce the overhead of CUDA kernel launch

■ Statically decide whether cache blocking 
optimization is applied
– Select (a) or (b) based on maximum size of output

■ Assign one thread block to each SpMM for 
whole matrix or sub matrix

12

Threads

SM

Input Matrix (sparse)

Input Matrix (dense)
Output Matrix (dense)

Global Memory

Shared Memory

(a) For small matrix (b) Cache blocking 
with SparseTensor



Performance Evaluation

14



Evaluation Environment

■ TSUBAME 3.0
– CPU: Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz
– GPU: NVIDIA Tesla P100
■ #SM: 56

– Shared memory: 64 KB/SM
■ Memory: 16GB

– SUSE Linux Enterprise
– NVCC V9.0.176

15



Benchmark of Batched Approaches for SpMM

■ Compare the performance of
– csrmm() and csrmm2() in cuSPARSE (non-batched)
– SpMM following SparseTensorDenseMatMul in TensorFlow (non-batched)
– gemmBatched() from Batched BLAS (batched, but for dense x dense MM)
– Batched SpMM for SparseTensor (batched)
– Batched SpMM for CSR (batched)

■ Randomly generate sparse matrix
– Parameter: Row/column size (= dim), sparsity (= nnz/row), batch

■ FLOPS in single precision
– 2 * nnzA * nB / exe_time
– Not include the operations between zero elements in gemmBatched()

16



Benchmark Results

■ Parameter settings are based on dataset and configuration of GCNs 
application
■ Significant speedups by Batched SpMM family

– Better sm_efficiency with Batched SpMM

17 batch=100, dim=50, nnz/row=3batch=50, dim=50, nnz/row=2

9.27x

6.09x

TensorFlow BatchedSpMM (ST) BatchedSpMM (CSR)

35.51% 89.07% 87.87%



Benchmark Results
Batch size

■ Precise comparison between batched approaches
■ Larger batch size simply brings higher throughput of SpMMs

– Batch=50 cases do not use all SMs on GPU 

18 batch=50, dim=64, nnz/row=3 batch=100, dim=64, nnz/row=3



Benchmark Results
Dimension

■ BatchedSpMM (CSR) is getting better performance
– Improvement of parallelism
■ Batched SpMM for CSR launches more threads in proportion to mA

■ Improvement of cuBLAS and BatchedSpMM (ST) is limited
– Increase of dim results in increase of sparsity, more zero-related operations
– More cache blocking causes memory pressure to same non-zero element

19 batch=100, dim=32, nnz/row=3 batch=100, dim=64, nnz/row=3 batch=100, dim=128, nnz/row=3



Benchmark Results
Sparsity

■ Batched SpMM kernels work efficiently on sparser matrices
– Improvement of Batched SpMM (ST) is limited
■ More race condition by atomic operation

■ cuBLAS appears to show better performance on denser matrices

20 batch=100, dim=64, nnz/row=3batch=100, dim=64, nnz/row=1 batch=100, dim=64, nnz/row=5



Benchmark Results
Mixed

■ Various inputs with changing dimension and sparsity
– dim = [32, 256], nz/row = [1, 5], batch = 100
– cuBLAS is excluded because it requires same input matrices sizes
– 3.29x performance improvement at n_B=1024

21



Evaluation on GCNs Application

■ ChemGCN implemented with TensorFlow
■ Dataset and configuration

■ Average time of 5 executions

22

#Matrices Max Dimension Epoch Batch size
(Training / Inference)

#layer of GraphCNN

Tox21 7,862 50 50 50 / 200 2
Reaction100 75,477 50 20 100 / 200 3



Formulation of Graph Convolution (again)

23

!" =$
%
&",% (% )

Feature

Adjacency matrix
1 0 0 0 0
0 1 0 0 0
1 1 1 1 0
0 0 1 1 1
0 0 0 0 1

A=

Y = AXW

1

2

3
4

5

Input (Graph structure and features)

MatMul and SpMM

GraphConvolution (Y, A, X, W, bias)

for b ← 0 to batchsize
do for ch← 0 to channel

do U ← MatMul (X[b], W[ch])
B ← Add(bias[ch], U)
C[ch] ← SpMM (A[b][ch], B)

Y[b] ← ElementWiseAdd(C)

GraphConvolutionBatched (Y, A, X, W, bias)

for ch← 0 to channel
do Xr← Reshape(X, (mx * batchsize, nx)

U ← MatMul(Xr, W[ch])
B ← Add(bias[ch], U)
Alist← [A[0][ch], ... , A[batchsize – 1][ch]
C[ch] ← BatchedSpMM(Alist, B)

Y ← ElementWiseAdd(C)



Evaluation on GCNs Application

■ Batched SpMM is used as Batched version
– Training: Up to 59% improvement
– Inference: Up to 37% improvement
– Data of Tox21 can be placed on LL cache in CPU case

24

Execution time [sec]

CPU GPU
Non-Batched Non-Batched Batched Speedup

Training Tox21 854.51 918.03 723.80 1.18x
Reaction100 16223.98 3029.13 1905.32 1.59x

Inference Tox21 2.71 2.56 1.97 1.30x
Reaction100 44.66 22.42 16.32 1.37x

Execution Time [sec]



Profiling with Timeline

■ Profiling result of GraphConvolution layer with Tox21 data
■ Reduction of kernel launches

– CUDA kernel launches: 50 * 3 => 3

25

Matmul
1.571 msec

Add
1.316 msec

SparseTensorDenseMatmul
1.981 msec

Matmul
0.031 msec

Add
0.023 msec

BatchedSpMM
0.190 msec

Non-Batched

MatMul Add
Batched SpMM

Batched

SparseTensorDenseMatMul



Related Work

■ Batched BLAS
– Handles many operations on dense matrix or vector in a single kernel
– High throughput for kernels on small matrices
– Batched SpMV
■ Highly application specialized (e.g. assumes same non-zero pattern)

■ Libraries and Framework for GCNs
– DeepChem
■ Graph structure is expressed as adjacency list

– Chainer Chemistry
■ Treat sparse matrix as dense matrix

– Many zero-related operations

26



Conclusion

■ Efficient algorithms for many SpMM operations for small matrix
– Sub-Warp Assigned SpMM
– Batched SpMM
■ Improve the locality of memory access and exploit shared memory

■ Significant performance boost
– Detailed preliminary performance evaluation
■ Up to 9.27x speedup from Non-batched SpMM kernel
■ Performance advantage to Batched GEMM for small matrices

– Evaluation on GCNs application
■ Up to 1.59x speedup for training and 1.37x speedup for inference

27

Code will be ready in the end of May
https://github.com/YusukeNagasaka/Batched-SpMM

https://github.com/YusukeNagasaka/Batched-SpMM

