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Graph Convolutional Networks (GCNs)

■ “Graph” is input data of neural network
– Chemical compounds and protein are expressed as “graph”
– Knowledge graph

1 Quoted from https://arxiv.org/pdf/1711.05859.pdf

https://arxiv.org/pdf/1711.05859.pdf


Formulation of Graph Convolution

2

!" =$
%
&",% (% )

Feature

Adjacency matrix
1 0 0 0 0
0 1 0 0 0
1 1 1 1 0
0 0 1 1 1
0 0 0 0 1

A=

Y = AXW

1

2

3
4

5

Input (Graph structure and features)

MatMul and SpMM

GraphConvolution (Y, A, X, W, bias)

for b ← 0 to batchsize
do for ch← 0 to channel

do U ← MatMul (X[b], W[ch])
B ← Add(bias[ch], U)
C[ch] ← SpMM (A[b][ch], B)

Y[b] ← ElementWiseAdd(C)

Execute many SpMM kernels.
Each operation is  independent of 
each other.



Performance Issues of GCNs Applications

■Many small computing kernels occupy the execution time
– GEMM, Sparse-Dense Matrix Multiplication (SpMM)
■ Launch overhead of repeated CUDA kernels is not negligible

– Not clear how to develop batched (small) sparse matrix routine
■ Load balance issue

– Number of nodes / sparsity of graph varies by input graphs
■ Occupancy issue

– Require architecture specific kernel

■ How to efficiently compute tens or hundreds of small SpMMs?
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Contribution

■ Batched approaches for SpMM on GPU to improve the performance of 
GCNs applications
– Sub-Warp-Assigned (SWA) SpMM for SpMM on small matrices
■ Support both SparseTensor and CSR

– Batched SpMM
■ High occupancy and utilization of fast shared memory
■ Reduce the overhead of CUDA kernel launches
■ Develop routines both for SparseTensor and CSR

– Execute tens or hundreds small SpMM by single kernel
– Significant performance boost
■ Up to 9.27x speedup compared to Non-batched approaches for SpMM
■ Up to 1.59x speedup for training and 1.37x speedup for inference on GCNs application
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Sparse Matrix Format

■ Compressing needless zero elements
– Storing only non-zero elements
– Reducing memory usage and computation

■Many formats have been proposed
– Being suited to architectures and given matrices
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Implementation of SpMM in TensorFlow

■ COO-like sparse matrix format
– Array of {Row, Column} ids

■ SparseTensorDenseMatmul
– 1 CUDA thread for 1 mul-add operation
– nnz * nDense threads
– Load-balanced workload
– Addition is done by atomicAdd
■ Expensive on global memory
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Sub-Warp-Assigned (SWA) SpMM

■ Assign subWarp to each non-zero element
– subWarp is set as power of two
■ Division and modulo operations by executing low-cost bit operations

– Reduce instructions for memory access to same non-zero element
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SWA_SpMM (C, A, B, subWarp)
// set matrix C to O
i← threadId
nzid← i /subWarp
rid ← idsA[nzid ∗ 2]
cid← idsA[nzid∗2+1]
val← valuesA[nzid]
for j ← (i % subWarp) to nB by subWarp

do Atomic (C[rid][j] ← C[rid][j] + val ∗ B[cid][j]) 
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Sub-Warp-Assigned (SWA) SpMM for CSR

■ Assign subWarp to each row of input sparse matrix
– Reduce instructions for memory access to same non-zero element
– Atomic-free addition to output matrix
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SWA_SpMM_CSR (C, A, B, subWarp)
// set matrix C to O
i← threadId
rid ← i / subWarp
for nzid← rptA[rid] to rptA[rid + 1]

do cid← colidsA[nzid]
val← valuesA[nzid]
for j ← (i % subWarp) to nB by subWarp

do C[rid][j] ← C[rid][j] + val * B[cid][j]
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Efficient Use of Shared Memory

■ Utilize shared memory for output matrix
– Reduce the overhead of CUDA kernel launch for 

initializing output matrix
– Hardware support for atomic operation on shared 

memory

■ Cache blocking optimization for larger inputs
– Divide the output matrix along the column
■ Larger output matrix can be placed on shared memory
■ Also improve the locality of memory access to input dense 

matrix
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Efficient Use of Shared Memory for CSR

■ Each subWarp keeps its output row (= nB)
– Not need to keep whole output matrix (= mA * nB) 

by each thread block

■More thread blocks for larger mA
– subWarp * mA > TB
– Row-wise division of input sparse matrix

■ Cache blocking for wider dense matrix
– TB / subwarp * nB > 32KB
■ Capacity of shared memory is 32KB
■ TB is thread block size

– Improve the locality of memory access to input 
dense matrix
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Batched Algorithm for SpMMs

■ 1 CUDA kernel manages multiple SpMMs
– Reduce the overhead of CUDA kernel launch

■ Statically decide whether cache blocking 
optimization is applied
– Select (a) or (b) based on maximum size of output

■ Assign one thread block to each SpMM for 
whole matrix or sub matrix
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Performance Evaluation
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Evaluation Environment

■ TSUBAME 3.0
– CPU: Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz
– GPU: NVIDIA Tesla P100
■ #SM: 56

– Shared memory: 64 KB/SM
■ Memory: 16GB

– SUSE Linux Enterprise
– NVCC V9.0.176
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Benchmark of Batched Approaches for SpMM

■ Compare the performance of
– csrmm() and csrmm2() in cuSPARSE (non-batched)
– SpMM following SparseTensorDenseMatMul in TensorFlow (non-batched)
– gemmBatched() from Batched BLAS (batched, but for dense x dense MM)
– Batched SpMM for SparseTensor (batched)
– Batched SpMM for CSR (batched)

■ Randomly generate sparse matrix
– Parameter: Row/column size (= dim), sparsity (= nnz/row), batch

■ FLOPS in single precision
– 2 * nnzA * nB / exe_time
– Not include the operations between zero elements in gemmBatched()
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Benchmark Results

■ Parameter settings are based on dataset and configuration of GCNs 
application
■ Significant speedups by Batched SpMM family

– Better sm_efficiency with Batched SpMM

17 batch=100, dim=50, nnz/row=3batch=50, dim=50, nnz/row=2

9.27x

6.09x

TensorFlow BatchedSpMM (ST) BatchedSpMM (CSR)

35.51% 89.07% 87.87%



Benchmark Results
Batch size

■ Precise comparison between batched approaches
■ Larger batch size simply brings higher throughput of SpMMs

– Batch=50 cases do not use all SMs on GPU 

18 batch=50, dim=64, nnz/row=3 batch=100, dim=64, nnz/row=3



Benchmark Results
Dimension

■ BatchedSpMM (CSR) is getting better performance
– Improvement of parallelism
■ Batched SpMM for CSR launches more threads in proportion to mA

■ Improvement of cuBLAS and BatchedSpMM (ST) is limited
– Increase of dim results in increase of sparsity, more zero-related operations
– More cache blocking causes memory pressure to same non-zero element

19 batch=100, dim=32, nnz/row=3 batch=100, dim=64, nnz/row=3 batch=100, dim=128, nnz/row=3



Benchmark Results
Sparsity

■ Batched SpMM kernels work efficiently on sparser matrices
– Improvement of Batched SpMM (ST) is limited
■ More race condition by atomic operation

■ cuBLAS appears to show better performance on denser matrices

20 batch=100, dim=64, nnz/row=3batch=100, dim=64, nnz/row=1 batch=100, dim=64, nnz/row=5



Benchmark Results
Mixed

■ Various inputs with changing dimension and sparsity
– dim = [32, 256], nz/row = [1, 5], batch = 100
– cuBLAS is excluded because it requires same input matrices sizes
– 3.29x performance improvement at n_B=1024
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Evaluation on GCNs Application

■ ChemGCN implemented with TensorFlow
■ Dataset and configuration

■ Average time of 5 executions
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#Matrices Max Dimension Epoch Batch size
(Training / Inference)

#layer of GraphCNN

Tox21 7,862 50 50 50 / 200 2
Reaction100 75,477 50 20 100 / 200 3



Formulation of Graph Convolution (again)
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Input (Graph structure and features)

MatMul and SpMM

GraphConvolution (Y, A, X, W, bias)

for b ← 0 to batchsize
do for ch← 0 to channel

do U ← MatMul (X[b], W[ch])
B ← Add(bias[ch], U)
C[ch] ← SpMM (A[b][ch], B)

Y[b] ← ElementWiseAdd(C)

GraphConvolutionBatched (Y, A, X, W, bias)

for ch← 0 to channel
do Xr← Reshape(X, (mx * batchsize, nx)

U ← MatMul(Xr, W[ch])
B ← Add(bias[ch], U)
Alist← [A[0][ch], ... , A[batchsize – 1][ch]
C[ch] ← BatchedSpMM(Alist, B)

Y ← ElementWiseAdd(C)



Evaluation on GCNs Application

■ Batched SpMM is used as Batched version
– Training: Up to 59% improvement
– Inference: Up to 37% improvement
– Data of Tox21 can be placed on LL cache in CPU case
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Execution time [sec]

CPU GPU
Non-Batched Non-Batched Batched Speedup

Training Tox21 854.51 918.03 723.80 1.18x
Reaction100 16223.98 3029.13 1905.32 1.59x

Inference Tox21 2.71 2.56 1.97 1.30x
Reaction100 44.66 22.42 16.32 1.37x

Execution Time [sec]



Profiling with Timeline

■ Profiling result of GraphConvolution layer with Tox21 data
■ Reduction of kernel launches

– CUDA kernel launches: 50 * 3 => 3
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Related Work

■ Batched BLAS
– Handles many operations on dense matrix or vector in a single kernel
– High throughput for kernels on small matrices
– Batched SpMV
■ Highly application specialized (e.g. assumes same non-zero pattern)

■ Libraries and Framework for GCNs
– DeepChem
■ Graph structure is expressed as adjacency list

– Chainer Chemistry
■ Treat sparse matrix as dense matrix

– Many zero-related operations
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Conclusion

■ Efficient algorithms for many SpMM operations for small matrix
– Sub-Warp Assigned SpMM
– Batched SpMM
■ Improve the locality of memory access and exploit shared memory

■ Significant performance boost
– Detailed preliminary performance evaluation
■ Up to 9.27x speedup from Non-batched SpMM kernel
■ Performance advantage to Batched GEMM for small matrices

– Evaluation on GCNs application
■ Up to 1.59x speedup for training and 1.37x speedup for inference
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Code will be ready in the end of May
https://github.com/YusukeNagasaka/Batched-SpMM

https://github.com/YusukeNagasaka/Batched-SpMM

