Batched Sparse Matrix Multiplication for
Accelerating Graph Convolutional Networks

Yusuke Nagasakat, Akira Nukadat, Kojima Ryosuke?, Satoshi Matsuoka8t
TTokyo Institute of Technology
*Kyoto University
SRIKEN Center for Computational Science

Graph Convolutional Networks (GCNSs)

m “Graph” is input data of neural network
- Chemical compounds and protein are expressed as “graph”
- Knowledge graph

(A) Graph Convolution Layers

Patien
Patien

Patient

Luminal A
Luminal B
Her2
Basal

—
Output

Fully Connected

.

e =
Ew-.‘.—'-ﬂ}_-,l

@0 -mm

(B) Relation Network

Figure 1: Overview of the proposed method

Quoted from https://arxiv.org/pdf/1711.05859.pdf

https://arxiv.org/pdf/1711.05859.pdf

Formulation of Graph Convolution

GraphConvolution (Y, A, X, W, bias) Feature -]
for b — O to batchsize ~
do for ch — O to channel y"_Z“i'fxfW » Y =AW
do U — MatMul (X[b], W[ch]) AN
B «— Add(b|aS[Ch], U) MatMul and SpMM

Clch] <« SpMM (A[b][ch], B)

i .(Adjacency matrix
Y[b] « ElementWiseAdd(C)

Execute many SpMM kernels.
Each operation is independent of
each other.

Performance Issues of GCNs Applications

m Many small computing kernels occupy the execution time
- GEMM, Sparse-Dense Matrix Multiplication (SpMM)
m Launch overhead of repeated CUDA kernels is not negligible

- Not clear how to develop batched (small) sparse matrix routine
m Load balance issue
- Number of nodes / sparsity of graph varies by input graphs
m Occupancy issue
- Require architecture specific kernel

m How to efficiently compute tens or hundreds of small SpMMs?

ik Ak

e

Contribution

m Batched approaches for SpMM on GPU to improve the performance of
GCNs applications

- Sub-Warp-Assigned (SWA) SpMM for SpMM on small matrices
m Support both SparseTensor and CSR

- Batched SpMM

m High occupancy and utilization of fast shared memory
m Reduce the overhead of CUDA kernel launches
m Develop routines both for SparseTensor and CSR

- Execute tens or hundreds small SpMM by single kernel

- Significant performance boost

m Up to 9.27x speedup compared to Non-batched approaches for SpMM
m Up to 1.59x speedup for training and 1.37x speedup for inference on GCNs application

Sparse Matrix Format

m Compressing needless zero elements
— Storing only non-zero elements
- Reducing memory usage and computation

m Many formats have been proposed
- Being suited to architectures and given matrices

Row pointer |0 [3|4 (6|69 a b c Rowid [0|0[0|1]|2[2]|4 |4
}/ \ d

Columnid [0[2[4[1(2]3[1|3|4| e|f ey Columnid |[0[2|4[1]2|3[1]|3

Value |a|b|c|dfe|f|g|h]i g hii Value |[af(b|c|d|e|f[g]|h

CSR (Compressed Sparse Row) COO (Coordinated)

Implementation of SpMM in TensorFlow

m COO-like sparse matrix format
— Array of {Row, Column} ids

»value
dloflo BBl + 3 >

m SparseTensorDenseMatmul
- 1 CUDA thread for 1 mul-add operation
- NNZ * Npepee Threads
- Load-balanced workload

— Addition is done by atomicAdd
m Expensive on global memory

Thread ID

0

1 2 3 4 5 6 7

Output Matrix

n Dense

'n 1 X X X X X X X X
1
x — Mpense 66
S
S

': n nonmnmnmumnin

5 6 22 24 21 24 36 40

Sub-Warp-Assighed (SWA) SpMM

m Assign subWarp to each non-zero element
- subWarp is set as power of two

m Division and modulo operations by executing low-cost bit operations

32 (nB > 16)

subWarp = .
min2? s.t. ng <2 (np < 16)

- Reduce instructions for memory access to same non-zero element _
atomicAdd()

SWA_SpMM (C, A, B, subWarp)
// set matrix Cto O
| «— threadld
nzid <« i /subWarp
rid «— ids,[nzid * 2]
cid « ids,[nzid*2+1]
val < values,[nzid]
for j — (i % subWarp) to ng by subWarp
do Atomic (C[rid][j] « C[rid][j] + val = B[cid][j])

Sub-Warp-Assignhed (SWA) SpMM for CSR

m Assign subWarp to each row of input sparse matrix
- Reduce instructions for memory access to same non-zero element
- Atomic-free addition to output matrix

SWA_SpMM_CSR (C, A, B, subWarp)
// set matrix Cto O
| «— threadld
rid < i / subWarp
for nzid « rpt,[rid] to rpt,[rid + 1]
do cid <« colids,[nzid]
val «— values,[nzid]
for j — (i % subWarp) to ng by subWarp
do C[rid][j] « CI[rid][j] + val * B[cid][j]

Efficient Use of Shared Memory

.y . (a) For small matrix (b) Cache blockin
m Utilize shared memory for output matrix with SparseTensor
- Reduce the overhead of CUDA kernel launch for =l -1l E . .
initializing output matrix Z\
- Hardware support for atomic operation on shared l .
memory LY Eely
m Cache blocking optimization for larger inputs
- Divide the output matrix along the column
m Larger output matrix can be placed on shared memory
m Also improve the locality of memory access to input dense |:| |:|
matrix A 4 \ 4

Global Memory

[Threads i Input Matrix (sparse)

D SM - Input Matrix (dense)
Shared Memory |:| Output Matrix (dense)

Efficient Use of Shared Memory for CSR

. EaC h S u bwa rp kee ps ItS O Utp Ut rOW (= n B) (c) CSR for larger sparse matrix (d) CSR for wider dense matrix

- Not need to keep whole output matrix (= m, * ng) = - B
by each thread block E .

m More thread blocks for larger m, ‘ﬁ . g.-l E.]
- subWarp * m, > TB 3 3 3
- Row-wise division of input sparse matrix - - -
m Cache blocking for wider dense matrix
- TB / subwarp * ng > 32KB L] - -
m Capacity of shared memory is 32KB ¥ ¥
m TBis thread block size B
- Improve the locality of memory access to input ET::“S F; e

d e nse m at rix Shared Memory |:| Output Matrix (dense)

Batched Algorithm for SpMMs

= 1 CUDA kernel manages multiple SpMMs PO i SparseTonsor
- Reduce the overhead of CUDA kernel launch = - E . .
m Statically decide whether cache blocking 7\
optimization is applied e e
~ Select (a) or (b) based on maximum size of output 4 4

m Assign one thread block to each SpMM for . . .
whole matrix or sub matrix

ol |

Global Memory
[Threads i Input Matrix (sparse)
D SM - Input Matrix (dense)

Shared Memory |:| Output Matrix (dense)

Performance Evaluation

Evaluation Environment

= TSUBAME 3.0
- CPU: Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz

- GPU: NVIDIA Tesla P100

m #SM: b6
- Shared memory: 64 KB/SM
= Memory: 16GB

- SUSE Linux Enterprise
- NVCC v9.0.176

Benchmark of Batched Approaches for SpMM

m Compare the performance of
- csrmm() and csrmmZ2() in cuSPARSE (non-batched)
- SpMM following SparseTensorDenseMatMul in TensorFlow (non-batched)
- gemmBatched() from Batched BLAS (batched, but for dense x dense MM)
- Batched SpMM for SparseTensor (batched)
- Batched SpMM for CSR (batched)

m Randomly generate sparse matrix
- Parameter: Row/column size (= dim), sparsity (= nnz/row), batch

m FLOPS in single precision
- 2% nnz, * ng/ exe_time
- Not include the operations between zero elements in gemmaBatched()

Benchmark Results

m Parameter settings are based on dataset and configuration of GCNs

application

m Sighificant speedups by Batched SpMM family

- Better sm_efficiency with Batched SpMM

35.51% 89.07% 87.87%

—¥— cuSPARSE

—+— TensorFlow

2 1 —® cuBLAS

—A— BatchedSpMM (ST)
4 —&— BatchedSpMM (CSR)

GFLOPS

Column size of right hand matrix

batch=50, dim=50, nnz/row=2

GFLOPS

7 —¥— cuSPARSE

| —@— cuBLAS

|
6.09x

=—+— TensorFlow

—A— BatchedSpMM (ST)
—#— BatchedSpMM (CSR)

Column size of right hand matrix

batch=100, dim=50, nnz/row=3

Benchmark Results
Batch size
m Precise comparison between batched approaches

m Larger batch size simply brings higher throughput of SpMMs
-~ Batch=50 cases do not use all SMs on GPU

200 200

—8— cuBLAS —&— cuBLAS
1759 s~ BatchedSpMM (ST) 1751 s~ BatchedSpMM (ST)
1504 BatchedSpMM (CSR) 1504 BatchedSpMM (CSR)

2! 2° 2° 2’ 2° 2! 2° 2° 2 2
Column size of right hand matrix Column size of right hand matrix

batch=50, dim=64, nnz/row=3 batch=100, dim=64, nnz/row=3

Benchmark Results
Dimension

m BatchedSpMM (CSR) is getting better performance
- Improvement of parallelism
m Batched SpMM for CSR launches more threads in proportion to m,
= Improvement of cuBLAS and BatchedSpMM (ST) is limited
- Increase of dim results in increase of sparsity, more zero-related operations
-~ More cache blocking causes memory pressure to same non-zero element

200 200 200
—&— CcuBLAS —&— cuBLAS —0— CcuBLAS
1759 4~ BatchedSpMM (ST) 1759 4~ BatchedSpMM (ST) 1759 _4+— BatchedSpMM (ST)
450, —* BatchedSpMM (CSR) 1504 ~—* BatchedSpMM (CSR) 1504 —* BatchedSpMM (CSR)
o 1254 o 1254 on 125
a a [a¥
O 100 O 100 Q 100
L L L
O 75 O 75 O 75-
50 50 50 -
25 25 A 25 A
B 1 & B
0 _.—_*1 3 5 7 9 0 1 3 5 7 9 0 1 3 5 7 9
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Column size of right hand matrix Column size of right hand matrix Column size of right hand matrix

batch=100, dim=32, nnz/row=3 batch=100, dim=64, nnz/row=3 batch=100, dim=128, nnz/row=3

Benchmark Results
Sparsity

m Batched SpMM kernels work efficiently on sparser matrices
- Improvement of Batched SpMM (ST) is limited

m More race condition by atomic operation

m CUBLAS appears to show better performance on denser matrices

D N
o o o

GFLOPS
a N oW b
> o &

o
1

1 —A— BatchedSpMM (ST)
| —~— BatchedSpMM (CSR)

)]
o o
1 1

—8— cuBLAS

Column size of right hand matrix

batch=100, dim=64, nnz/row=1

—8— cuBLAS

1 —A— BatchedSpMM (ST)
| —+— BatchedSpMM (CSR)

Column size of right hand matrix

batch=100, dim=64, nnz/row=3

GFLOPS

250 A

200 A

N

n

o
1

N

o

o
1

n
o
1

o
1

—8— CcuBLAS
—A&— BatchedSpMM (ST)
—#*— BatchedSpMM (CSR)

Column size of right hand matrix

batch=100, dim=64, nnz/row=5

Benchmark Results
Mixed

m Various inputs with changing dimension and sparsity
- dim = [32, 256], nz/row = [1, b], batch = 100
— CUBLAS is excluded because it requires same input matrices sizes
- 3.29x performance improvement at n_B=1024

7 | =¥ cusPARSE
2 71 —— TensorFlow
—a&— BatchedSpMM (ST)
5 | —#*— BatchedSpMM (CSR)

GFLOPS

Column size of right hand matrix

Evaluation on GCNs Application

m ChemGCN implemented with TensorFlow

m Dataset and configuration

#Matrices | Max Dimension | Epoch | Batch size #layer of GraphCNN
(Training / Inference)

Tox21 7,862 50/ 200 2
Reaction100 15,477 50 20 100 / 200 3

m Average time of 5 executions

Formulation of Graph Convolution (again)

GraphConvolution (Y, A, X, W, bias)

for b — O to batchsize
do for ch — O to channel
do U — MatMul (X[b], W[ch])
B «— Add(bias[ch], U)
C[ch] « SpMM (A[b][ch], B)
Y[b] <« ElementWiseAdd(C)

GraphConvolui-.‘ionBatcheci (Y, A, X, W, bias)

for ch — O to channel
do X, — Reshape(X, (m, * batchsize, n,)
U «— MatMul(X,, W[ch])
B «— Add(bias[ch], U)
At — [A[O][ch], ..., A[batchsize - 1][ch]
C[ch] « BatchedSpMM(A:, B)
Y «— ElementWiseAdd(C)

Evaluation on GCNs Application

m Batched SpMM is used as Batched version
— Training: Up to 59% improvement
- Inference: Up to 37% improvement
- Data of Tox21 can be placed on LL cache in CPU case

- Non-Batched Non-Batched Batched Speedup
e Tox21 854.51 918.03 723.80 1.18x
- Reaction100 16223.98 3029.13 1905.32 1.59x

Tox21 2.71 2.56 1.97 1.30x
w Reaction100 44.66 22.42 16.32 1.37x

Execution Time [sec]

Profiling with Timeline

m Profiling result of GraphConvolution layer with Tox21 data

m Reduction of kernel launches
— CUDA kernel launches: 50 * 3 => 3

Matmul Add SparseTensorDenseMatmul
1.571 msec 1.316 msec 1.981 msec
| i |
Non-Batched
: LULLLULLLLLL UL LU LU DL LU LU UL L UL LU LLLLELEEE UL UL L ELEL L LLELLL LU L
| ™ SparseTensorDenseMatMul
MatMul i Add e
e e Batched SpMM
Batched
. ! , . ' . .
Matmul Add BatchedSpMM

0.031 msec 0.023 msec 0.190 msec

Related Work

m Batched BLAS

- Handles many operations on dense matrix or vector in a single kernel
— High throughput for kernels on small matrices
- Batched SpMV

m Highly application specialized (e.g. assumes same non-zero pattern)

m Libraries and Framework for GCNs
- DeepChem

m Graph structure is expressed as adjacency list
— Chainer Chemistry

m Treat sparse matrix as dense matrix
- Many zero-related operations

Conclusion

m Efficient algorithms for many SpMM operations for small matrix
- Sub-Warp Assighed SpMM
- Batched SpMM

m Improve the locality of memory access and exploit shared memory

m Significant performance boost

- Detailed preliminary performance evaluation
m Up to 9.27x speedup from Non-batched SpMM kernel
m Performance advantage to Batched GEMM for small matrices

- Evaluation on GCNs application
m Up to 1.59x speedup for training and 1.37x speedup for inference

Code will be ready in the end of May
https://github.com/YusukeNagasaka/Batched-SpMM

https://github.com/YusukeNagasaka/Batched-SpMM

