
High-Performance
Sparse Matrix-Matrix Products

on Intel KNL and Multicore
Architectures

Yusuke Nagasaka†, Satoshi Matsuoka�†

Ariful Azad‡, Aydın Buluç‡

† Tokyo Institute of Technology
� Riken Center for Computational Science
‡ Lawrence Berkeley National Laboratory

Sparse General Matrix-Matrix Multiplication
(SpGEMM)
■ Key kernel in graph processing and numerical

applications
– Markov clustering, Betweenness centrality, triangle

counting, ...
– Preconditioner for linear solver
■ AMG (Algebraic Multigrid) method

– Time-consuming part

1

ah+
bk

ai+b
l

cj

dk dl

eh fj ei gm

a b

c

d

e f g

h i

j

k l

m
Output MatricesInput Matrices

Accumulation of intermediate products
Sparse Accumulator (SPA) [Gilbert, SIAM1992]

2

0 0

SPA

value

index 0 2

0 0ah ai

bit flag 0 0 0 01 1

ah+
bk

ai+
bl

cj

dk dl

eh fj ei gm

a b
c

d
e f g

h i
j

k l
m

Input Matrices Output Matrices

a b
c
d
e f g

h i
j
k l
m

0 2
3
0 2
1

0 2
1
2
0 1 3

Value Column id

Input matrices in sparse format

Accumulation of intermediate products
Sparse Accumulator (SPA) [Gilbert, SIAM1992]

3

0 0

SPA

value

index 0 2

0 0ah ai
ah
+
bk

ai
+
bl

bit flag 0 0 0 01 1

ah+
bk

ai+
bl

cj

dk dl

eh fj ei gm

a b
c

d
e f g

h i
j

k l
m

Input Matrices Output Matrices

a b
c
d
e f g

h i
j
k l
m

0 2
3
0 2
1

0 2
1
2
0 1 3

Value Column id

Input matrices in sparse format

Accumulation of intermediate products
Sparse Accumulator (SPA) [Gilbert, SIAM1992]

4

0 0

SPA

value

index 0 2

0 0ah ai
ah
+
bk

ai
+
bl

value

index 0 2

ah
+
bk

ai
+
bl

0th row of Output

bit flag 0 0 0 01 1

ah+
bk

ai+
bl

cj

dk dl

eh fj ei gm

a b
c

d
e f g

h i
j

k l
m

Input Matrices Output Matrices

a b
c
d
e f g

h i
j
k l
m

0 2
3
0 2
1

0 2
1
2
0 1 3

Value Column id

Input matrices in sparse format

Accumulation of intermediate products
Sparse Accumulator (SPA) [Gilbert, SIAM1992]

5

0 0

SPA

value

index 0 2

0 0ah ai
ah
+
bk

ai
+
bl

value

index 0 2

ah
+
bk

ai
+
bl

0th row of Output

bit flag 0 0 0 01 1

ah+
bk

ai+
bl

cj

dk dl

eh fj ei gm

a b
c

d
e f g

h i
j

k l
m

Input Matrices Output Matrices

a b
c
d
e f g

h i
j
k l
m

0 2
3
0 2
1

0 2
1
2
0 1 3

Value Column id

Input matrices in sparse format

J Efficient accumulation of intermediate
products: Lookup cost is O(1)
L Requires O(#columns) memory by one thread

Existing approaches for SpGEMM

■ Several sequential and parallel SpGEMM algorithms
– Also packaged in software/libraries

6

Algorithm (Library) Accumulator Sortedness (Input/Output)

MKL - Any/Select
MKL-inspector - Any/Unsorted
KokkosKernels HashMap Any/Unsorted
Heap Heap Sorted/Sorte
Hash Hash Table Any/Select

Existing approaches for SpGEMM

■ Several sequential and parallel SpGEMM algorithms
– Also packaged in software/libraries

7

Algorithm (Library) Accumulator Sotedness (Input/Output)

MKL - Any/Select
MKL-inspector - Any/Unsorted
KokkosKernels HashMap Any/Unsorted
Heap Heap Sorted/Sorte
Hash Hash Table Any/Select

Questions?

(a) What is the best algorithm/implementation for a
problem at hand?

(b) What is the best algorithm/implementation for the
architecture to be used in solving the problem?

Contribution

■We characterize, optimize and evaluate existing
SpGEMM algorithms for real-world applications on
modern Multi-core and Many-core architectures
– Characterizing the performance of SpGEMM on shared-

memory platforms
■ Intel Haswell and Intel KNL architectures
■ Identify bottlenecks and mitigate them

– Evaluation including several use cases
■ A2, Square x Tall-skinny, L*U for triangle counting

– Showing the impact of keeping unsorted output
– A recipe for selecting the best-performing algorithm for

a specific application scenario

8

Benchmark for SpGEMM
Thread scheduling cost

■ Evaluates the scheduling cost on Haswell and KNL
architectures
– OpenMP: static, dynamic and guided

■ Scheduling cost hurts the SpGEMM performance

9

Benchmark for SpGEMM
Memory allocation/deallocation cost

■ Identifies that allocation/deallocation of large
memory space is expensive
■ Parallel memory allocation scheme

– Each thread independently allocates/deallocates
memory and accesses only its own memory space

– For SpGEMM, we can reduce deallocation cost

10

Parallel memory allocation Deallocation cost

Benchmark for SpGEMM
Impact of MCDRAM

■MCDRAM provides high memory bandwidth
– Obviously improves stream benchmark
– Performance of stanza-like memory access is unclear
■ Small blocks of consecutive elements
■ Access to rows of B in SpGEMM

11

Hard to get the benefits of
MCDRAM on very sparse
matrices in SpGEMM

Architecture Specific Optimization
Thread scheduling

■ Good load-balance with static scheduling
– Assigning work to threads by FLOP
– Work assignment can be efficiently executed in parallel
■ Counting required FLOP of each row
■ PrefixSum to get total FLOP of SpGEMM
■ Assigning rows to thread (Eg. shows the case of 3 threads)

– Average FLOP = 11/3

12

a b

c

d

e f g

h i

j

k l

m
Input Matrices

4

1

2

4

FLOP

4

5

7

11
PrefixSum

0
4

1

2

4

Architecture Specific Optimization
Accumulator for Symbolic and Numeric Phases

■ Optimizing algorithms for Intel architectures
■ Heap [Azad, 2016]

– Priority queue indexed by column indices
– Requires logarithmic time to extract elements
– Space efficient: O(nnz(ai*))
■ Better cache utilization

■ Hash [Nagasaka, 2016]
– Uses hash table for accumulator, based on GPU work
■ Low memory usage and high performance

– Each thread once allocates the hash table and reuses it
– Extended to HashVector to exploit wide vector register

13

Architecture Specific Optimization
HashVector

■ Utilizing 256 and 512-bit wide vector register of
Intel architectures for hash probing
– Reduces the number of probing caused by hash collision
– Requires a few more instructions for each check
■ Degrades the performance when the collisions in Hash are rare

14

1) Check the entry 2) If hash is collided, check next entry

3) If the entry is empty, add the element

1) Check multiple entries
with vector register

2) If the element is not found and the
row has empty entry, add the element

(a) Hash

(b) HashVector

: element to be added : non-empty entry : empty entry

Performance Evaluation

15

Matrix Data

■ Synthetic matrix
– R-MAT, the recursive matrix generator
– Two different non-zero patterns of synthetic matrices
■ ER: Erdős–Rényi random graphs
■ G500: Graphs with power-law degree distributions

– Used for Graph500 benchmark

– Scale n matrix: 2n-by-2n

– Edge factor: the average number of non-zero elements
per row of the matrix

■ SuiteSparse Matrix Collection
– 26 sparse matrices used in several past work

16

Evaluation Environment

■ Cori system @NERSC
– Haswell Cluster
■ Intel Xeon Processor E5-2698 v3
■ 128GB DDR4 memory

– KNL Cluster
■ Intel Xeon Phi Processor 7250

– 68 cores
– 32KB/core L1 cache, 1MB/tile L2 cache
– 16GB MCDRAM
– Quadrant, cache

■ 96GB DDR4 memory
– OS: SuSE Linux Enterprise Server 12 SP3
– Intel C++ Compiler (icpc) ver18.0.0
■ -g –O3 -qopenmp

17

Benefit of Performance Optimization
Scheduling and memory allocation

■ Good load balance with static scheduling
■ For larger matrices, parallel memory allocation

scheme keeps high performance

18

A^2 of G500 matrices with edge factor=16

Benefit of Performance Optimization
Use of MCDRAM

■ Benefit of MCDRAM especially on denser matrices

19

Performance Evaluation
A^2: Scaling with density (KNL, ER)

■ Scale = 16
■ Different performance trends

– Performance of MKL degrades with increasing density

20

Performance Evaluation
A^2: Scaling with density (KNL, ER)

■ Performance gain with keeping output unsorted

21

Performance Evaluation
A^2: Scaling with density (KNL, G500)

■ Denser inputs do not simply bring performance gain
– Different from ER matrices

22

Performance Evaluation
A^2: Scaling with density (Haswell)

■ HashVector achieves much higher performance

23

Performance Evaluation
A^2: Scaling with input size (KNL, ER)

■ Edge factor = 16
■ Hash and HashVector show good performance in

any input size

24

Performance Evaluation
A^2: Scaling with input size (KNL, ER)

■ Performance gain with keeping output unsorted
■MKL for small scale ó HashVector for large scale

25

Performance Evaluation
A^2: Scaling with input size (KNL, G500)

■ Hash is best performer

26

Performance Evaluation
A^2: Scaling with input size (Haswell)

■More clear performance trend of KNL
– MKL for smaller scales
– Hash and HashVector for larger scales

27

Performance Evaluation
A^2: Scalability (KNL)

■ Good scalability of Hash and HashVec even after
64 threads

28

Performance Evaluation
A^2: Sensitivity of compression ratio (KNL)

■ Evaluation on SuiteSparse matrices
■ Compression ratio (CR): #flop/#non-zero of output
■ Heap: stable performance
■MKL and Hash: Better performance with higher CR

29

Performance Evaluation
A^2: Sensitivity of compression ratio (KNL)

■ Hash for low CR ó MKL family for high CR
■ KokkosKernel underperforms other kernels

30

Performance Evaluation
A^2: Profile of Relative Performance

■ Sorted: Hash is best performer for 70% matrices
– Runtime of Hash is always within 1.6x of the best

■ Unsorted: Hash, HashVector and MKL-inspector
perform equally
– Each of them performs the best for about 30%

31

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Performance Relative to the Best Algorithm

Fr
ac

tio
n

of
 P

ro
bl

em
s

Sorted

Hash
HashVector
MKL
Heap

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Performance Relative to the Best Algorithm

Fr
ac

tio
n

of
 P

ro
bl

em
s

Unsorted

Hash
HashVector
MKL
MKL−inspector
Kokkos

Performance Evaluation
Square x Tall-skinny matrix (KNL)

■Multiple BFS, Betweenness Centrality
■ Hash or HashVec is the best performer

32

Performance Evaluation
Triangle Counting on SuiteSparse matrices (KNL)

■ Reorders and transforms a matrix to L and U
– L is lower triangle and U is upper triangle

■ Similar performance trend to that of A^2
– Hash and HashVector generally overwhelm MKL

33

Empirical Recipe for SpGEMM on KNL

34

High CR (>2) Low CR (<=2)
A x A Sorted Hash Hash

Unsorted MKL-inspector Hash
L x U Sorted Hash Heap

Sparse (Edge factor <=8) Dense (Edge factor > 8)
Uniform Skewed Uniform Skewed

A x A Sorted Heap Heap Heap Hash
Unsorted HashVec HashVec HashVec Hash

Tall-
Skinny

Sorted - Hash - HashVec
Unsorted - Hash - Hash

(b) Synthetic data specified by sparsity and non-zero pattern

(a) Real data specified by compression ratio (CR)

Conclusion

■ Performance analysis of SpGEMM on Intel KNL and
multicore architectures
– Optimizing implementation for these architectures
■ Identify the bottlenecks

– Evaluation in various use cases
■ Clarify which SpGEMM algorithm works well

– Highlighting the benefit of leaving matrices unsorted
– Empirical recipe for selecting the best-performing

algorithm for a specific application scenario

35

Source code is publicly available at
https://bitbucket.org/YusukeNagasaka/mtspgemmlib

