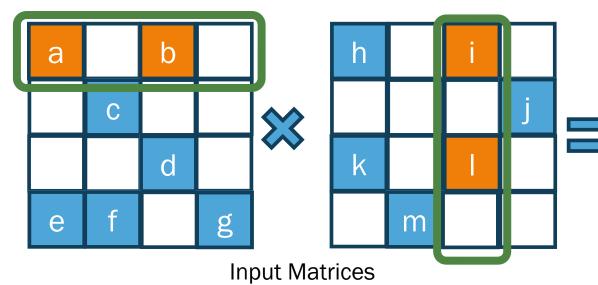
High-Performance Sparse Matrix-Matrix Products on Intel KNL and Multicore Architectures

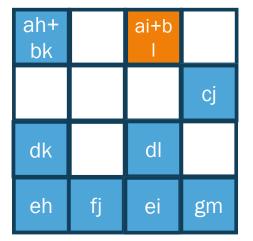
<u>Yusuke Nagasaka</u>[†], Satoshi Matsuoka^{§†} Ariful Azad[‡], Aydın Buluç[‡]

> † Tokyo Institute of Technology § Riken Center for Computational Science ‡ Lawrence Berkeley National Laboratory

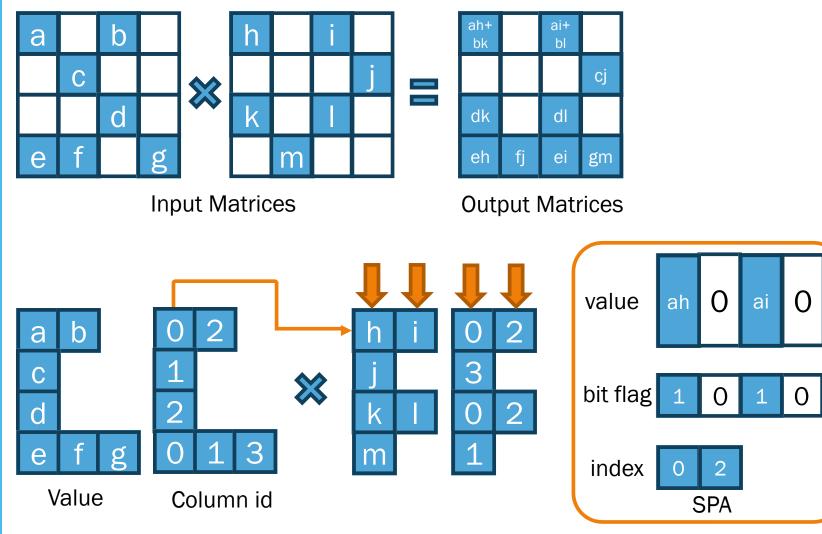
Sparse General Matrix-Matrix Multiplication (SpGEMM)

- Key kernel in graph processing and numerical applications
 - Markov clustering, Betweenness centrality, triangle counting, ...
 - Preconditioner for linear solver
 - AMG (Algebraic Multigrid) method
 - Time-consuming part





Output Matrices

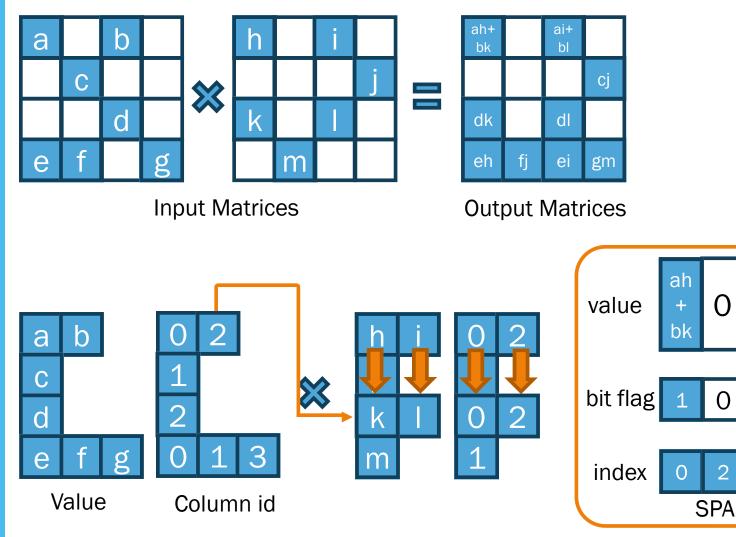


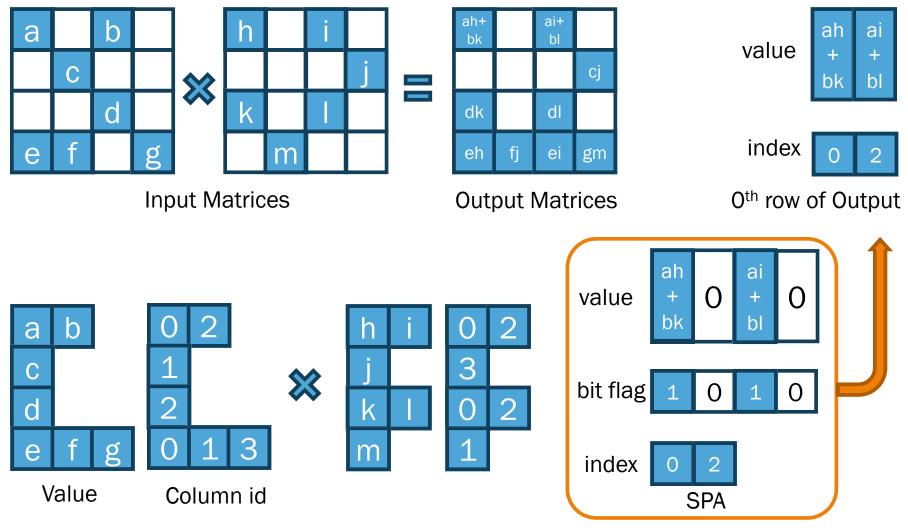
ai

+

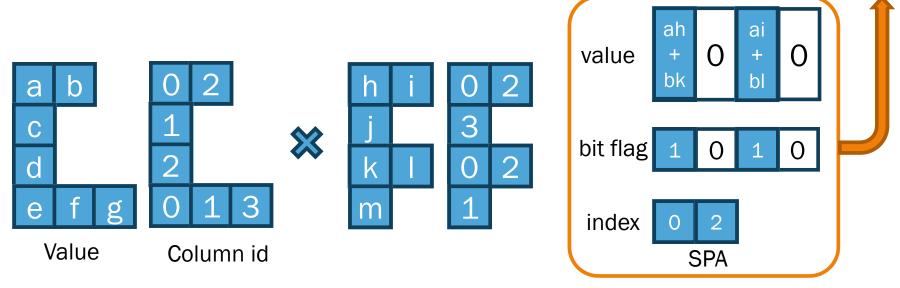
bl

 \cap





Efficient accumulation of intermediate products: Lookup cost is O(1) Requires O(#columns) memory by one thread



Existing approaches for SpGEMM

Several sequential and parallel SpGEMM algorithms

- Also packaged in software/libraries

Algorithm (Library)	Accumulator	Sortedness (Input/Output)	
MKL	-	Any/Select	
MKL-inspector	-	Any/Unsorted	
KokkosKernels	HashMap	Any/Unsorted	
Неар	Неар	Sorted/Sorte	
Hash	Hash Table	Any/Select	

Existing approaches for SpGEMM

Several sequential and parallel SpGEMM algorithms

Also nackaged in software/libraries

Questions?

(a) What is the best algorithm/implementation for a problem at hand?

(b) What is the best algorithm/implementation for the architecture to be used in solving the problem?

Hash lable Any Select

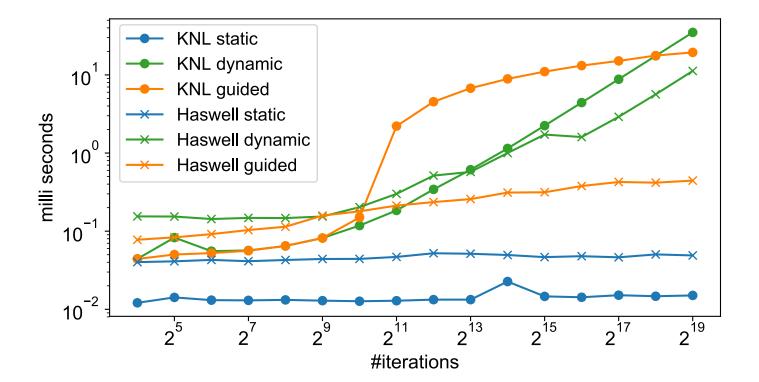
Contribution

- We characterize, optimize and evaluate existing SpGEMM algorithms for real-world applications on modern Multi-core and Many-core architectures
 - Characterizing the performance of SpGEMM on sharedmemory platforms
 - Intel Haswell and Intel KNL architectures
 - Identify bottlenecks and mitigate them
 - Evaluation including several use cases
 - A², Square x Tall-skinny, L*U for triangle counting
 - Showing the **impact of keeping unsorted output**
 - A recipe for selecting the best-performing algorithm for a specific application scenario

Benchmark for SpGEMM Thread scheduling cost

- Evaluates the scheduling cost on Haswell and KNL architectures
 - OpenMP: static, dynamic and guided

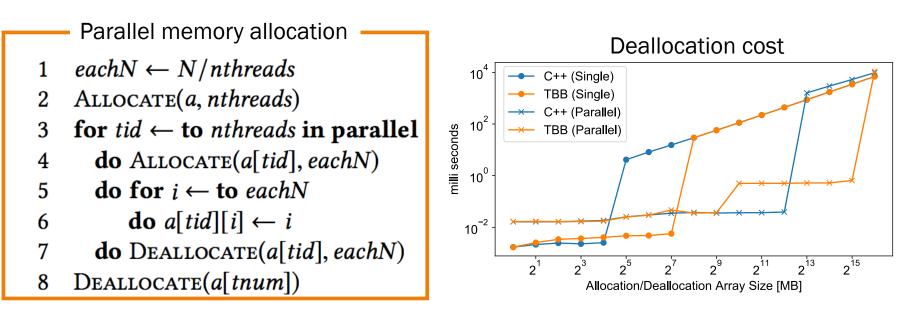
Scheduling cost hurts the SpGEMM performance



Benchmark for SpGEMM Memory allocation/deallocation cost

Identifies that allocation/deallocation of large memory space is expensive

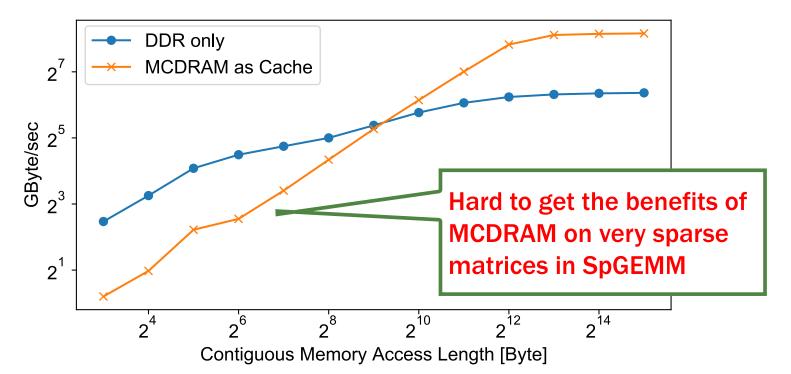
- Parallel memory allocation scheme
 - Each thread independently allocates/deallocates memory and accesses only its own memory space
 - For SpGEMM, we can reduce deallocation cost



Benchmark for SpGEMM Impact of MCDRAM

MCDRAM provides high memory bandwidth

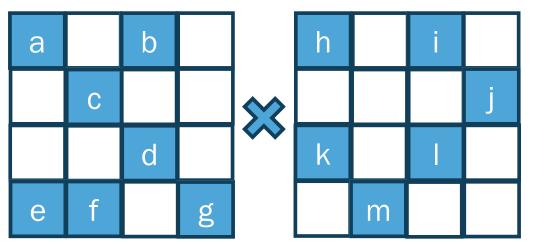
- Obviously improves stream benchmark
- Performance of stanza-like memory access is unclear
 - Small blocks of consecutive elements
 - Access to rows of B in SpGEMM

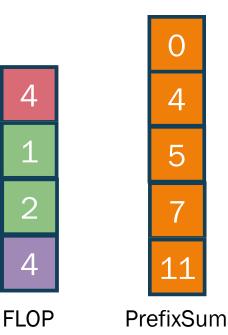


Architecture Specific Optimization Thread scheduling

Good load-balance with static scheduling

- Assigning work to threads by FLOP
- Work assignment can be efficiently executed in parallel
 - Counting required FLOP of each row
 - PrefixSum to get total FLOP of SpGEMM
 - Assigning rows to thread (Eg. shows the case of 3 threads)





4

1

2

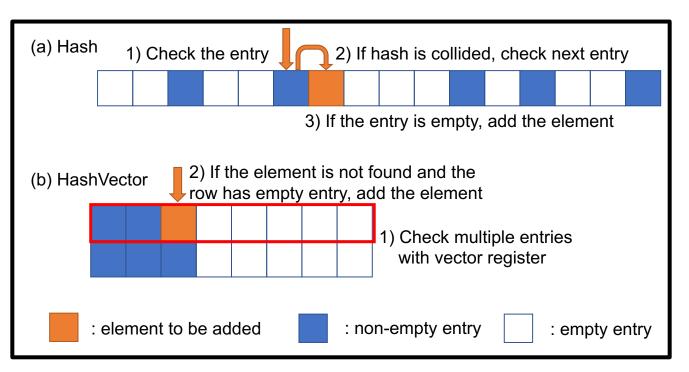
4

Architecture Specific Optimization Accumulator for Symbolic and Numeric Phases

- Optimizing algorithms for Intel architectures
- Heap [Azad, 2016]
 - Priority queue indexed by column indices
 - Requires logarithmic time to extract elements
 - Space efficient: O(nnz(a_{i*}))
 - Better cache utilization
- Hash [Nagasaka, 2016]
 - Uses hash table for accumulator, based on GPU work
 - **Low memory usage and high performance**
 - Each thread once allocates the hash table and reuses it
 - Extended to HashVector to exploit wide vector register

Architecture Specific Optimization HashVector

- Utilizing 256 and 512-bit wide vector register of Intel architectures for hash probing
 - Reduces the number of probing caused by hash collision
 - Requires a few more instructions for each check
 - Degrades the performance when the collisions in Hash are rare



Performance Evaluation

Matrix Data

Synthetic matrix

- R-MAT, the recursive matrix generator
- Two different non-zero patterns of synthetic matrices
 - **ER**: Erdős–Rényi random graphs
 - **G500**: Graphs with power-law degree distributions
 - Used for Graph500 benchmark
- Scale *n* matrix: 2ⁿ-by-2ⁿ
- Edge factor: the average number of non-zero elements per row of the matrix

SuiteSparse Matrix Collection

- 26 sparse matrices used in several past work

Evaluation Environment

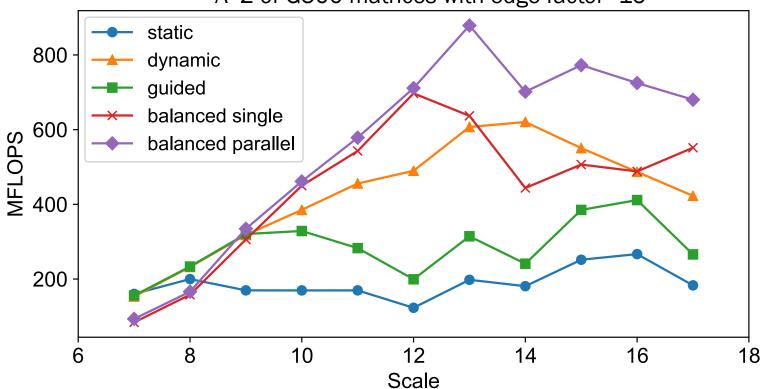
Cori system @NERSC

- Haswell Cluster
 - Intel Xeon Processor E5-2698 v3
 - 128GB DDR4 memory
- KNL Cluster
 - Intel Xeon Phi Processor 7250
 - 68 cores
 - 32KB/core L1 cache, 1MB/tile L2 cache
 - 16GB MCDRAM
 - Quadrant, cache
 - 96GB DDR4 memory
- OS: SuSE Linux Enterprise Server 12 SP3
- Intel C++ Compiler (icpc) ver18.0.0
 - -g -03 -qopenmp

Benefit of Performance Optimization Scheduling and memory allocation

Good load balance with static scheduling

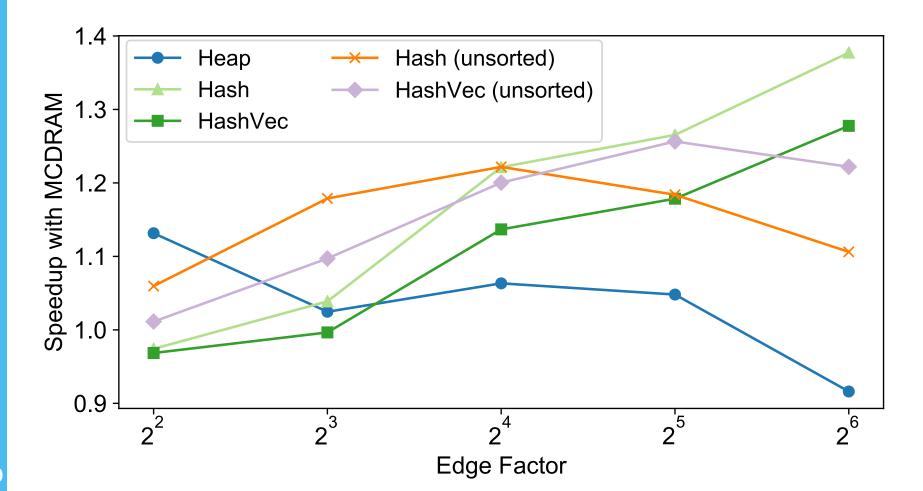
For larger matrices, parallel memory allocation scheme keeps high performance



A^2 of G500 matrices with edge factor=16

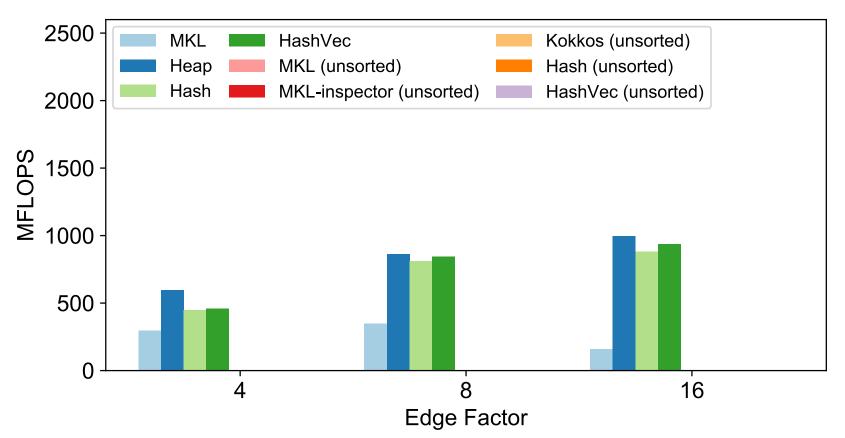
Benefit of Performance Optimization Use of MCDRAM

Benefit of MCDRAM especially on denser matrices



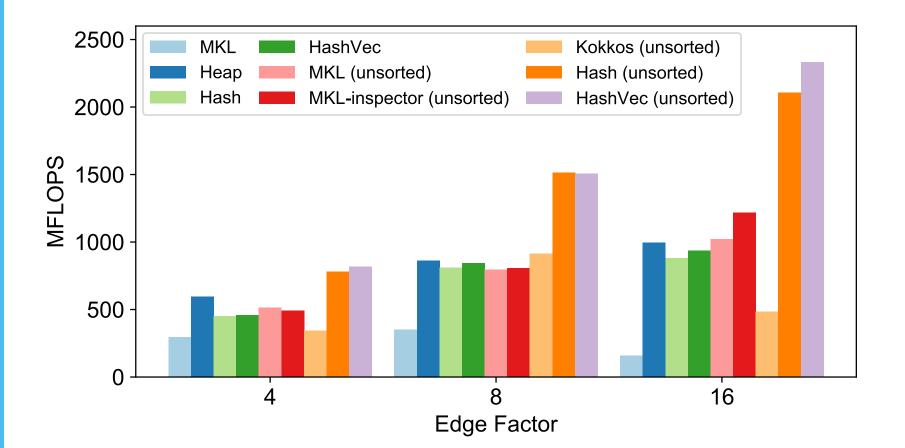
Performance Evaluation A^2: Scaling with density (KNL, ER)

- Scale = 16
- Different performance trends
 - Performance of MKL degrades with increasing density



Performance Evaluation A^2: Scaling with density (KNL, ER)

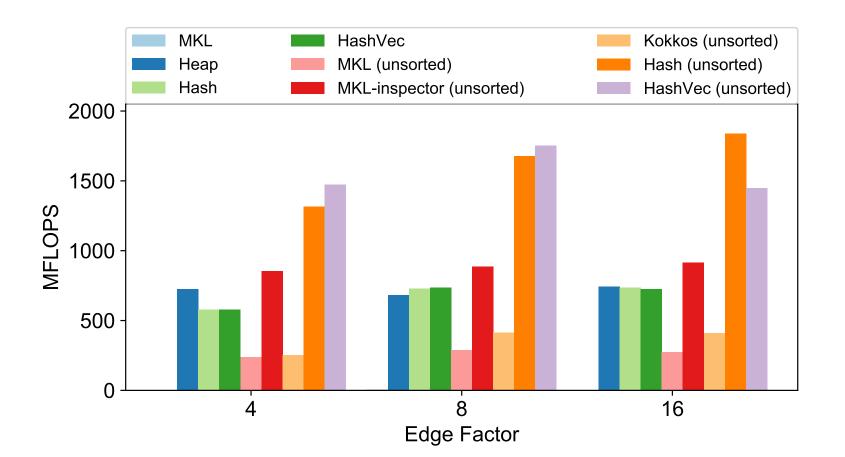
Performance gain with keeping output unsorted



Performance Evaluation A^2: Scaling with density (KNL, G500)

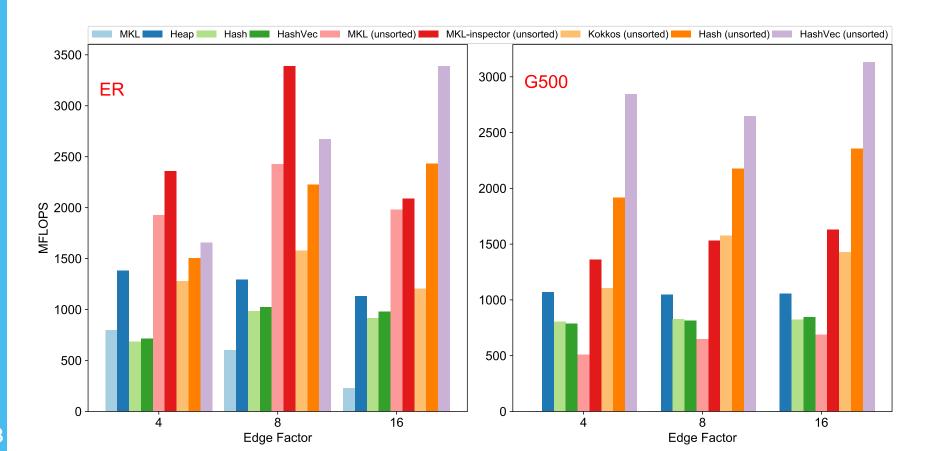
Denser inputs do not simply bring performance gain

Different from ER matrices



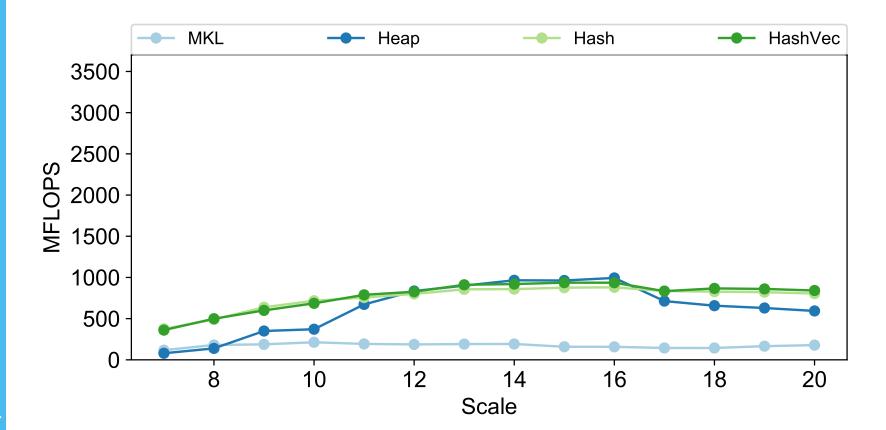
Performance Evaluation A^2: Scaling with density (Haswell)

HashVector achieves much higher performance



Performance Evaluation A^2: Scaling with input size (KNL, ER)

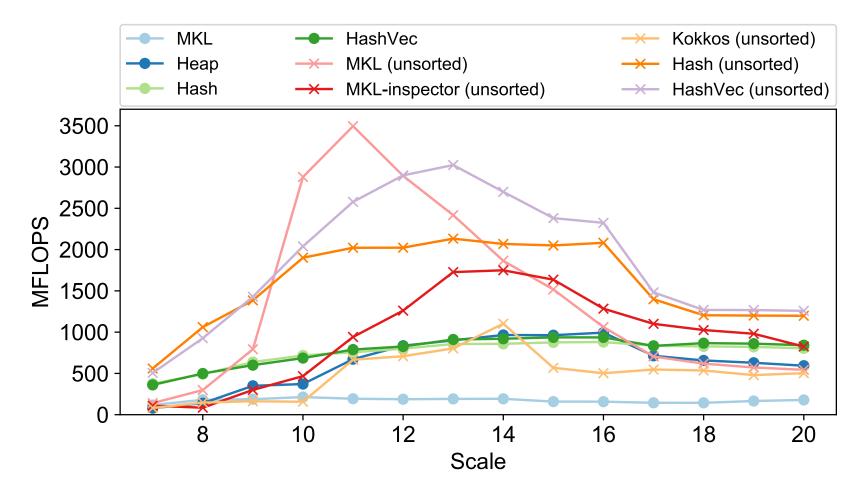
- Edge factor = 16
- Hash and HashVector show good performance in any input size



Performance Evaluation A^2: Scaling with input size (KNL, ER)

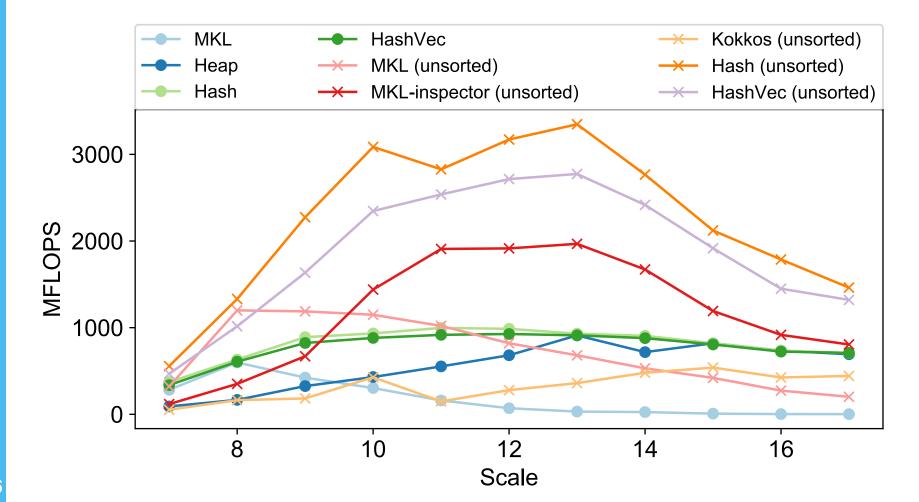
Performance gain with keeping output unsorted

MKL for small scale HashVector for large scale



Performance Evaluation A^2: Scaling with input size (KNL, G500)

Hash is best performer



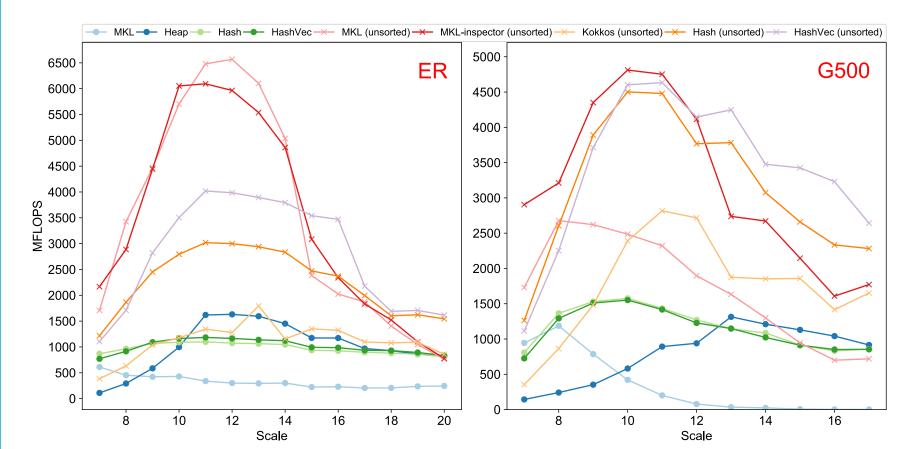
Performance Evaluation A^2: Scaling with input size (Haswell)

More clear performance trend of KNL

MKL for smaller scales

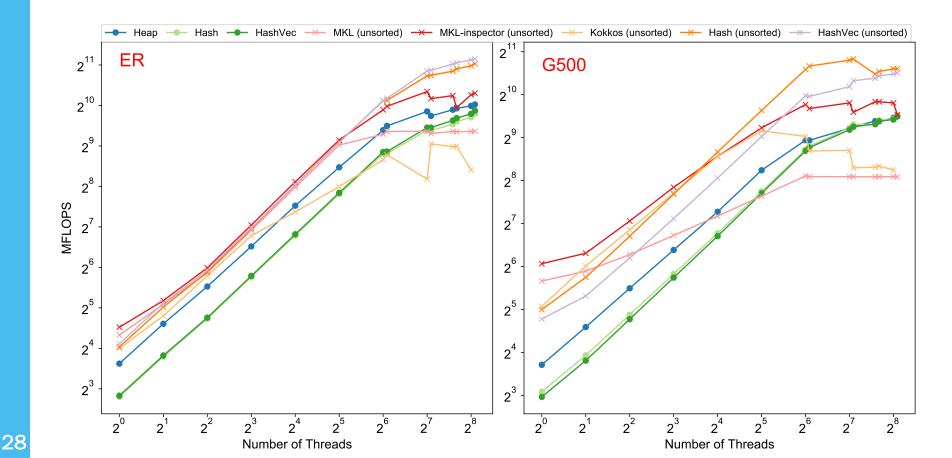
27

- Hash and HashVector for larger scales



Performance Evaluation A^2: Scalability (KNL)

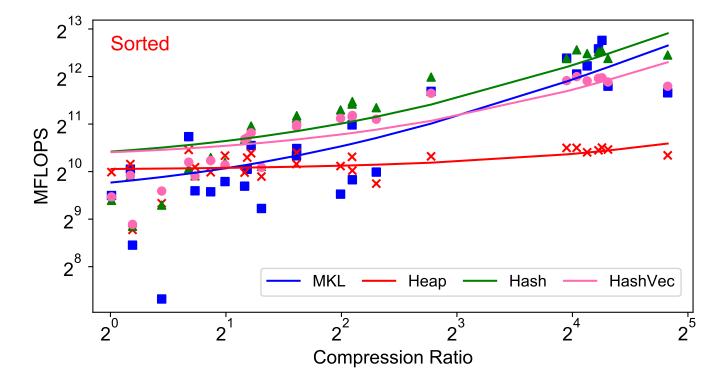
Good scalability of Hash and HashVec even after 64 threads



Performance Evaluation A^2: Sensitivity of compression ratio (KNL)

- Evaluation on SuiteSparse matrices
- Compression ratio (CR): #flop/#non-zero of output
- Heap: stable performance

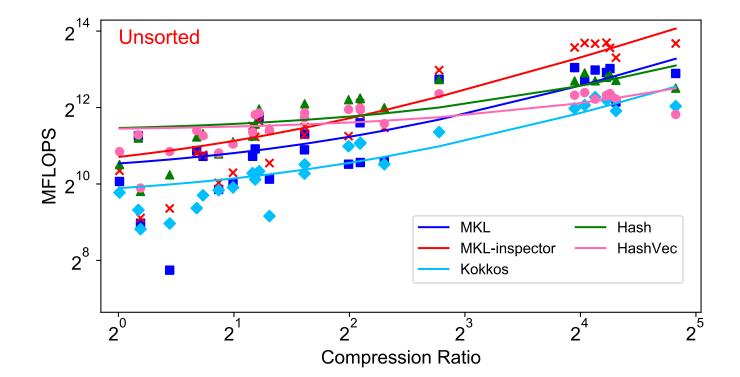
MKL and Hash: Better performance with higher CR



Performance Evaluation A^2: Sensitivity of compression ratio (KNL)

■ Hash for low CR ⇔ MKL family for high CR

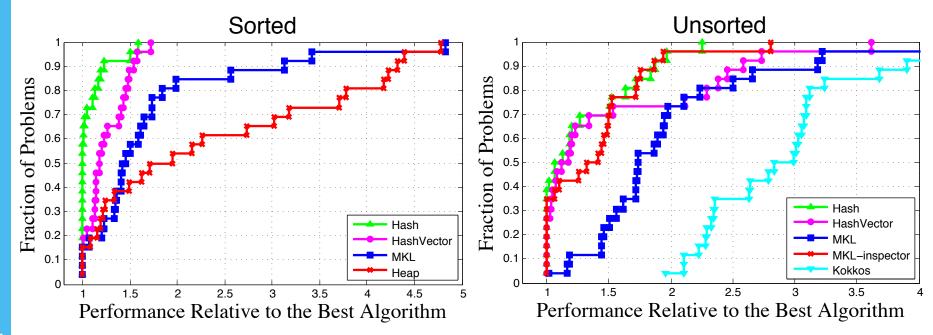
KokkosKernel underperforms other kernels



Performance Evaluation A^2: Profile of Relative Performance

Sorted: Hash is best performer for 70% matrices

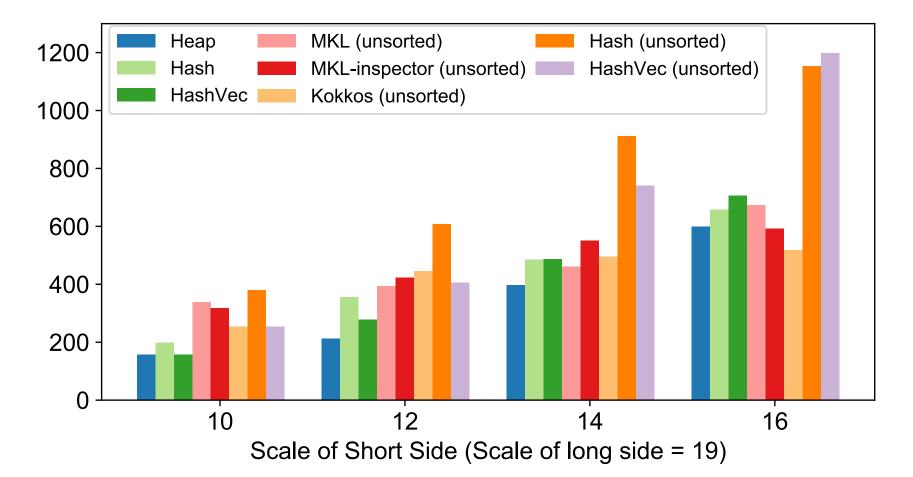
- Runtime of Hash is always within 1.6x of the best
- Unsorted: Hash, HashVector and MKL-inspector perform equally
 - Each of them performs the best for about 30%



Performance Evaluation Square x Tall-skinny matrix (KNL)

Multiple BFS, Betweenness Centrality

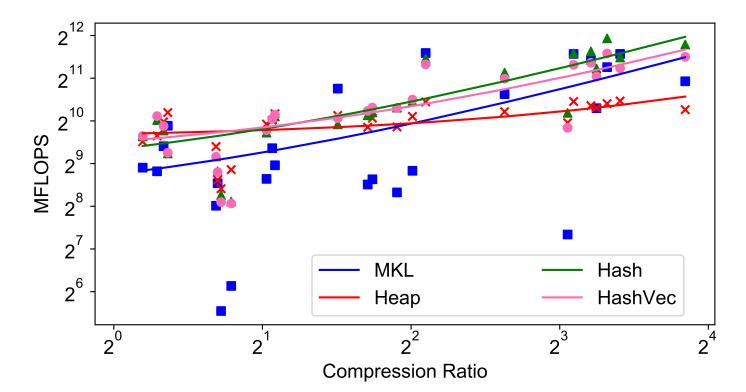
Hash or HashVec is the best performer



Performance Evaluation Triangle Counting on SuiteSparse matrices (KNL)

Reorders and transforms a matrix to L and U

- L is lower triangle and U is upper triangle
- Similar performance trend to that of A^2
 - Hash and HashVector generally overwhelm MKL



Empirical Recipe for SpGEMM on KNL

(a) Real data specified by compression ratio (CR)

		High CR (>2)	Low CR (<=2)	
AxA	Sorted	Hash Hash		
	Unsorted	MKL-inspector	Hash	
LxU	Sorted	Hash	Неар	

(b) Synthetic data specified by sparsity and non-zero pattern

		Sparse (Edge factor <=8)		Dense (Edge factor > 8)	
		Uniform	Skewed	Uniform	Skewed
AxA	Sorted	Неар	Неар	Неар	Hash
	Unsorted	HashVec	HashVec	HashVec	Hash
Tall-	Sorted	-	Hash	-	HashVec
Skinny	Unsorted	-	Hash	-	Hash

Conclusion

Performance analysis of SpGEMM on Intel KNL and multicore architectures

- Optimizing implementation for these architectures
 - Identify the bottlenecks
- Evaluation in various use cases
 - Clarify which SpGEMM algorithm works well
- Highlighting the **benefit of leaving matrices unsorted**
- **Empirical recipe** for selecting the best-performing algorithm for a specific application scenario

Source code is publicly available at https://bitbucket.org/YusukeNagasaka/mtspgemmlib