High-Performance
Sparse Matrix-Matrix Products
on Intel KNL and Multicore
Architectures

Yusuke Nagasakat, Satoshi Matsuoka$t
Ariful Azad*, Aydin Buluc#

T Tokyo Institute of Technology
§ Riken Center for Computational Science
T Lawrence Berkeley National Laboratory

Sparse General Matrix-Matrix Multiplication
(SpGEMM)

m Key kernel in graph processing and numerical
applications

- Markov clustering, Betweenness centrality, triangle
counting, ...

-~ Preconditioner for linear solver
m AMG (Algebraic Multigrid) method

- Time-consuming part

Input Matrices Output Matrices

Accumulation of intermediate products
Sparse Accumulator (SPA) [Gilbert, SIAM1992]

eh fj e gm

Input Matrices Output Matrices

-

value |:i¢ a

%

xR

bit flag

HE =
o] [o
~/

index | o ~
Value Column id _ SPA -/

Input matrices in sparse format

Accumulation of intermediate products
Sparse Accumulator (SPA) [Gilbert, SIAM1992]

&'F E o
index | o § ~

Value Column id \

Input matrices in sparse format

Accumulation of intermediate products
Sparse Accumulator (SPA) [Gilbert, SIAM1992]

ah ai
value + +

bk bl

Ot row of Output

[
value
a b
C
x bit flag
d
e f g index |)
Value Column id _

Input matrices in sparse format

Accumulation of intermediate products
Sparse Accumulator (SPA) [Gilbert, SIAM1992]

© Efficient accumulation of intermediate
products: Lookup cost is O(1)
® Requires O(#columns) memory by one thread

b
x bit flag
f g index | o § ~

Value Column id _ SPA -/

Input matrices in sparse format

O QO O 9

Existing approaches for SpGEMM

m Several sequential and parallel SpGEMM algorithms
— Also packaged in software/libraries

Algorlthm (Library) Sortedness (Input/Output)

Any/Select
MKL-inspector - Any/Unsorted
KokkosKernels HashMap Any/Unsorted
Heap Heap Sorted/Sorte

Hash Hash Table Any/Select

Existing approaches for SpGEMM

m Several sequential and parallel SpGEMM algorithms

Questions?

(@) What is the best algorithm/implementation for a
problem at hand?

(b) What is the best algorithm/implementation for the
architecture to be used in solving the problem?

~

Contribution

m We characterize, optimize and evaluate existing
SpPpGEMM algorithms for real-world applications on
modern Multi-core and Many-core architectures

- Characterizing the performance of SpGEMM on shared-
memory platforms
m Intel Haswell and Intel KNL architectures
m ldentify bottlenecks and mitigate them
- Evaluation including several use cases
m A2, Square x Tall-skinny, L*U for triangle counting
- Showing the impact of keeping unsorted output

- A recipe for selecting the best-performing algorithm for
a specific application scenario

Benchmark for SpGEMM

Thread scheduling cost

m Evaluates the scheduling cost on Haswell and KNL
architectures
- OpenMP: static, dynamic and guided

m Scheduling cost hurts the SpGEMM performance

—eo— KNL static
1_- —e— KNL dynamic

107 o KNL guided
—»— Haswell static
—<— Haswell dynamic
—<— Haswell guided

milli seconds
—
(@)

#iterations

Benchmark for SpGEMM

Memory allocation/deallocation cost

m Ildentifies that allocation/deallocation of large
memory space is expensive

m Parallel memory allocation scheme

- Each thread independently allocates/deallocates
memory and accesses only its own memory space

- For SpGEMM, we can reduce deallocation cost

Parallel memory allocation :
Deallocation cost

eachN < N /nthreads 10°] —e— Ct+ (Single)
ALLOCATE(a, nthreads) ~° TBB(Sindle)

—%— C++ (Parallel)
for tid < to nthreads in parallel

101 —« TBB (Parallel)
do ArrocATE(a[tid], eachN)
do for j « to eachN

do a[tid][i] « i 10
g 3 5 7 9 11 13 15

milli seconds

10° 1

L

0O I N U W W DN =

do DeALLOCATE(a|tid], eachN)
2 2 2 2 2 2 2 2
DEALLOCATE(a[tnum]) Allocation/Deallocation Array Size [MB]

Benchmark for SpGEMM
Impact of MCDRAM

= MCDRAM provides high memory bandwidth
— Obviously improves stream benchmark
- Performance of stanza-like memory access is unclear
m Small blocks of consecutive elements
m Access to rows of B in SpGEMM

—eo— DDR only
7| —<— MCDRAM as Cache

Hard to get the benefits of

MCDRAM on very sparse
matrices in SpGEMM

GByte/sec

14

4 26 28 210 212 5
Contiguous Memory Access Length [Byte]

Architecture Specific Optimization
Thread scheduling

m Good load-balance with static scheduling
— Assigning work to threads by FLOP

- Work assignment can be efficiently executed in parallel
m Counting required FLOP of each row
m PrefixSum to get total FLOP of SpGEMM
m Assigning rows to thread (Eg. shows the case of 3 threads)
- Average FLOP = 11/3

Input Matrices FLOP PrefixSum

Architecture Specific Optimization
Accumulator for Symbolic and Numeric Phases

m Optimizing algorithms for Intel architectures

m Heap [Azad, 2016]

— Priority queue indexed by column indices
- Requires logarithmic time to extract elements
- Space efficient: O(nnz(a;.))

m Better cache utilization

m Hash [Nagasaka, 2016]

- Uses hash table for accumulator, based on GPU work
= Low memory usage and high performance

- Each thread once allocates the hash table and reuses it
- Extended to HashVector to exploit wide vector register

Architecture Specific Optimization
HashVector

m Utilizing 256 and 512-bit wide vector register of
Intel architectures for hash probing

- Reduces the number of probing caused by hash collision

- Requires a few more instructions for each check
m Degrades the performance when the collisions in Hash are rare
) If hash is collided, check next entry

ﬁ H EH B

3) If the entry is empty, add the element

(@) Hash 1y check the entry

(b) HashVector 2) If the element is not found and the
row has empty entry, add the element

1) Check multiple entries
with vector register

. : element to be added . : non-empty entry : empty entry

Performance Evaluation

Matrix Data

m Synthetic matrix
- R-MAT, the recursive matrix generator

- Two different non-zero patterns of synthetic matrices
m ER: Erddés-Rényi random graphs
m G500: Graphs with power-law degree distributions
- Used for Graphb500 benchmark

— Scale n matrix: 2"-by-2"

— Edge factor: the average number of non-zero elements
per row of the matrix

m SuiteSparse Matrix Collection
—- 26 sparse matrices used in several past work

Evaluation Environment

m Cori system @NERSC

- Haswell Cluster
m Intel Xeon Processor Eb-2698 v3
m 128GB DDR4 memory

— KNL Cluster
m Intel Xeon Phi Processor 7250
~ 68 cores
- 32KB/core L1 cache, 1MB/tile L2 cache
- 16GB MCDRAM
- Quadrant, cache
m 96GB DDR4 memory

- 0OS: SuSE Linux Enterprise Server 12 SP3

- Intel C++ Compiler (icpc) ver1l8.0.0
m -g -03 -qopenmp

Benefit of Performance Optimization
Scheduling and memory allocation
m Good load balance with static scheduling

m For larger matrices, parallel memory allocation
scheme keeps high performance

A”2 of GbOO matrices with edge factor=16

—e— static
8001 —a— dynamic
—&— guided
| = balanced single
@ 600 —o— balanced parallel
O
™
< 400 -
200 A
6 8 10 12 14 16 18

Scale

Benefit of Performance Optimization
Use of MCDRAM

m Benefit of MCDRAM especially on denser matrices

RN
AN

—o— Heap —¢— Hash (unsorted)
Hash —&— HashVec (unsorted)
| —=— HashVec

RN
w

Speedup with MCDRAM
> L

O
©

Edge Factor

Performance Evaluation
A"2: Scaling with density (KNL, ER)

m Scale = 16

m Different performance trends
- Performance of MKL degrades with increasing density

2500 + MKL B HashVec Kokkos (unsorted)
B Heap " MKL (unsorted) e Hash (unsorted)
2000 - Hash W MKL-inspector (unsorted) HashVec (unsorted)
2 1500-
@)
—
LL
= 1000 -
500 - I I
0- .

4 8 16
Edge Factor

Performance Evaluation
A"2: Scaling with density (KNL, ER)

m Performance gain with keeping output unsorted

2500 + MKL B HashVec Kokkos (unsorted)
B Heap " MKL (unsorted) e Hash (unsorted)
i Hash W MKL-inspector (unsorted) " HashVec (unsorted)
2000
2 1500 -
@)
—
LL
= 1000 -
500 -

4 8 16
Edge Factor

Performance Evaluation
A”2: Scaling with density (KNL, G500)

m Denser inputs do not simply bring performance gain
- Different from ER matrices

MKL B HashVec Kokkos (unsorted)
BN Heap 0 MKL (unsorted) W Hash (unsorted)
Hash Bl MKL-inspector (unsorted) " HashVec (unsorted)
2000 1
1500 -
)
S
—1 1000 -
LL
=
500
O_

8
Edge Factor

Performance Evaluation
A"2: Scaling with density (Haswell)

m HashVector achieves much higher performance

[MKLEEE Heap Hash B HashVec " MKL (unsorted) ll MKL-inspector (unsorted) Kokkos (unsorted) @& Hash (unsorted) """ HashVec (unsorted)
3500
3000 -
ER G500
3000 -
2500
2500 -
2000 -
g 2000 -
o
o
< 1500 1
1500
1000 -
1000 -
500 - 500
0- 04
4 8 16 4 8 16

Edge Factor Edge Factor

Performance Evaluation
A"N2: Scaling with input size (KNL, ER)
m Edge factor = 16

m Hash and HashVector show good performance in
any input size

MKL —&— Heap Hash —&— HashVec
3500 -
3000 -
2500 +
0
O 2000 -
—
< 15001
1000 +
500 - W
O I I I I I I I
8 10 12 14 16 18 20

Scale

Performance Evaluation
A"N2: Scaling with input size (KNL, ER)

m Performance gain with keeping output unsorted
m MKL for small scale <~ HashVector for large scale

MKL —8— HashVec Kokkos (unsorted)
—8— Heap —¢— MKL (unsorted) —»%— Hash (unsorted)
Hash —»— MKL-inspector (unsorted) HashVec (unsorted)
3500 -
3000 -
2500 +
o
O 2000 -
—
= 1500- o
1000 - /
5001 X .
0L ==
8 10 12 14 16 18 20

Performance Evaluation
A"2: Scaling with input size (KNL, G500)

m Hash is best performer

MKL —8— HashVec Kokkos (unsorted)
—8— Heap —¢— MKL (unsorted) —¢— Hash (unsorted)
Hash —»— MKL-inspector (unsorted) —<— HashVec (unsorted)
3000 -
n
o 2000
@)
1
LL
=
1000 -
7
O_

Scale

Performance Evaluation
A"2: Scaling with input size (Haswell)

= More clear performance trend of KNL
- MKL for smaller scales
- Hash and HashVector for larger scales

MKL—@— Heap Hash —@— HashVec -~ MKL (unsorted)—%— MKL-inspector (unsorted) Kokkos (unsorted) —»¢— Hash (unsorted) <~ HashVec (unsorted)
5000 -
6500 -
G500
6000 - 4500
5500 -
4000
5000 -
4500 3500 1
4000 1 i
* 3000
& 35001
5 2500 -
< 3000
2500 1 2000
2000 - 1500 |
1500
1000 - / 1000 1
500 500
o 0
8 10 12 14 16 18 20 8 10 12 14 16

Scale Scale

Performance Evaluation
A"2: Scalability (KNL)

m Good scalability of Hash and HashVec even after
64 threads

—8— Heap Hash —@— HashVec -~ MKL (unsorted) —¢— MKL-inspector (unsorted) Kokkos (unsorted) —<— Hash (unsorted) <~ HashVec (unsorted)
1
2 -
2" G500
10
1] 2 7
9 -
2° 1 2
2° 1 2’
2
7 7]
9 2y 2
TR
=
6 6
2 1 2 &7
7,
2° 1 55]
24 7 24 4
2° 2]
7R L S L A A A S 7R L S L A A A L

Number of Threads Number of Threads

Performance Evaluation

AMN2: Sensitivity of compression ratio (KNL)

m Evaluation on SuiteSparse matrices

m Compression ratio (CR): #flop/#non-zero of output
m Heap: stable performance

= MKL and Hash: Better performance with higher CR

513]

MFLOPS

2° o o° 2° 73 2°
Compression Ratio

Performance Evaluation
AMN2: Sensitivity of compression ratio (KNL)

m Hash for low CR < MHKL family for high CR
m KokkosKernel underperforms other kernels

14

N

MFLOPS
N)

—_
N
1

—_
o
1

Compression Ratio

1 Unsorted XX x
X
% .u g C
—/ s t
—————— —
= B A— P
o Y3
‘ X
A
x &
3 4 ¢ — MKL —— Hash
—— MKL-inspector —— HashVec
[] —— Kokkos
0 2 3 4
2 2 2

Performance Evaluation
A™2: Profile of Relative Performance

m Sorted: Hash is best performer for 70% matrices
- Runtime of Hash is always within 1.6x of the best

m Unsorted: Hash, HashVector and MKL-inspector
perform equally

- Each of them performs the best for about 30%

Sorted Unsorted
T T T T 1 T I T T
1 =_ - ‘ :
09} . . 0.9} o
%) »n ‘
E 0.8} E 0.8+
Q Q
5 0.7 :51 0.7+
E 0.6 Q;O: 0.6+
‘-la 0.5 qa 0.5}
g 0.4} g 0.4r ‘ ‘
‘5 0.3f NS ‘503 ==& Hash
«% —#— Hash % 02 —@— HashVector
ﬁ o2r | =—®— HashVector || E : —— KL
0.1r |~ MKL H 0.1} =—#— MKL-inspector ||
== Heap o ~=¥== Kokkos
0 T T T T

II 1i5 I2 2i5 ;3 3i5 4 4.5 5 I1 1i5 I2) 215 3 3.5. 4
Performance Relative to the Best Algorithm Performance Relative to the Best Algorithm

Performance Evaluation
Square X Tall-skinny matrix (KNL)

m Multiple BFS, Betweenness Centrality
m Hash or HashVec is the best performer

1200 - B Heap 0 MKL (unsorted) I Hash (unsorted)
Hash B MKL-inspector (unsorted) “" HashVec (unsorted)

B HashVec Kokkos (unsorted
1000 A ()

800
600
400

200

O_

10 12 14 16
Scale of Short Side (Scale of long side = 19)

Performance Evaluation
Triangle Counting on SuiteSparse matrices (KNL)

m Reorders and transforms a matrixto L and U
- L is lower triangle and U is upper triangle

m Similar performance trend to that of A*2
- Hash and HashVector generally overwhelm MKL

12 |
11
10 |
2
O 2 7
0
= 28-
2" -
— MKL —— Hash
6 [}
2 . —— Heap —— HashVec
2’ o' % 2 2"

Compression Ratio

Empirical Recipe for SpGEMM on KNL

a) Real data specified by compression ratio (CR)

_ High CR (>2) |Low CR (<=2)
AxXA Hash Hash
MKL-inspector Hash

Hask Heap

b) Synthetic data specified by sparsity and non-zero pattern

- Sparse (Edge factor <=8) | Dense (Edge factor > 8)

Sorted Heap Heap Heap Hash

HashVec HashVec HashVec Hash
Tall- - Hash - HashVec

Skinny - Hash ; Hash

Conclusion

m Performance analysis of SpGEMM on Intel KNL and
multicore architectures
- Optimizing implementation for these architectures
m ldentify the bottlenecks

- Evaluation in various use cases
m Clarify which SpGEMM algorithm works well

- Highlighting the benefit of leaving matrices unsorted

— Empirical recipe for selecting the best-performing
algorithm for a specific application scenario

Source code is publicly available at
https://bitbucket.org/YusukeNagasaka/mtspgemmilib

