
MRG8–Random Number Generation
for the Exascale Era
Yusuke Nagasaka†, Ken-ichi Miura ‡, John Shalf ‡

Akira Nukada†, Satoshi Matsuoka�†

† Tokyo Institute of Technology
‡ Lawrence Berkeley National Laboratory
� RIKEN Center for Computational Science

Random Number Generator

■ Pseudo random number generator (PRNG) is a crucial component of
numerous algorithms and applications
– Quantum chemistry, molecular dynamics
– Broader classes of Monte Carlo algorithms
– Machine Learning field
■ Shuffling of training data
■ Initializing weights of neural network
■ cf.) Numpy employs Mersenne Twister

■ Pseudo and Real random number
■What is a requirement for “Good PRNG”?

1

Random Number Generator

■ Pseudo random number generator (PRNG) is a crucial component of
numerous algorithms and applications
– Quantum chemistry, molecular dynamics
– Broader classes of Monte Carlo algorithms
– Machine Learning field
■ Shuffling of training data
■ Initializing weights of neural network
■ cf.) Numpy employs Mersenne Twister

■ Pseudo and Real random number
■What is a requirement for “Good PRNG”?

2

• Long recurrence length
• Good statistical quality
• Deterministic Jump-ahead for parallelism
• Performance (throughput)

Recurrence Length

■ PRNGs will eventually repeat themselves
– Eg.) LCG in the C standard library repeat themselves in as few as 2.15 * 109

steps (too short)
– Much additional cost to erase the effect of auto-correlation
■ Greatly reduce the effective performance of algorithm

– Minimum requirement is for an entire year of executing at full speed on a
supercomputer

3

MT19937 MRG32k3a Philox MRG8
Period 219937 - 1 2191 2130 (231 – 1)8 - 1

Statistical Quality

■ Sequence must show no statistical bias
– Otherwise, PRNGs affect the outcome of a simulation

■ TestU01 developed by L’Ecuyer
– Benchmark set for empirical statistical testing of random number generators
– Three pre-defined battery
■ Small Crush: 15 tests, using 2 random numbers
■ Crush: 186 tests, using 2 random numbers
■ Big Crush: 234 tests, using 2 random numbers

4

Jump-ahead for Parallelism

■ Two primary approaches for parallelization of PRNG
– Multistream
■ Different random “seed” to produce different random number sequence
■ Overhead of setting the start point is not expensive
■ Chance of correlated number sequences is not so low

– cf.) birthday paradox

5

Thread0 Thread1 Thread2

Thread3

0

Correlated
number

sequence

Jump-ahead for Parallelism

■ Two primary approaches for parallelization of PRNG
– Substream (Jump-ahead)
■ Each worker get a sub-sequence that is guaranteed to be non-overlapping with its peers

– Parallelization does not break the statistical quality of PRNGs
■ Cost of jump-ahead may hurt parallel scalability

6

Thread0 Thread1 Thread2 Thread3

NN * 3/4N * 2/4N * 1/40

!" #⁄

MRG8

■ 8th-order full primitive polynomials
– One of multiple recursive generators
– Next random number is generated from previous random numbers with

polynomial
■ xn = a1xn-1 + a2xn-2 + a3xn-3 + a4xn-4 + a5xn-5 + a6xn-6 + a7xn-7 + a8xn-8 mod (231 - 1)
■ Modulo operation can be executed by “bit shift”, “bit and” and “plus” operation

■ Long period
– (231 – 1)8 ~ 4.5*1074

■ Good statistical quality
– Pass Big crash of TestU01

7

Contribution

■We reformulate the MRG8 for Intel’s KNL and NVIDIA’s GPU
– Utilize wide 512-bit register
– Exploit parallelism of many-core processors

■ Huge performance benefit from existing libraries
– MRG8-AVX512 achieves a substantial 69% improvement
– MRG8-GPU shows a maximum x3.36 speedup

■ Secure the statistical quality and long period of original MRG8

8

Reformulating to Matrix-Vector Operation

■ Compute multiple next random numbers in one matrix-vector
operation

9

! =

&' &(
1 0

&+ &#
0 0

0	 1
0	 0

0 0
1 0

&- &.
0 0

&/ &0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 1
0 0

0 0
0 0

0 0
0 0

0 0
1 0

0 0
0 0

0 1
0 0

0 0
1 0

, 234' = 	

534'
534(
534+
534#
534-
534.
534/
5340

23 = !	234'	mod	9
23:0 = !0	23	mod	9
23:0
23:'.
23:(#
23:+(

=
!0
!'.
!(#
!+(

	23	mod	9A8, A16, A24 and A32

can be precomputed

Easily apply
vector/parallel
processing to
Mat-vec op

Jump-ahead Random Sequence in MRG8

■ Jump-ahead to arbitrary point
– When jump to i-th point, compute !;	2<	=>?	9
– Implementation: Matrix-vector multiplication
■ Precompute !(@	(B = 0, 1, 2, … , 246)
■ Compute !;	2<	=>?	9

– !; = 	 H'!' ∗ H(!(∗ H+!# ∗	... 	∗ 	H(#.!(
JKL	(HM 	∈ {0, 1})

– In the implementation, executed as mat-vec, not mat-mat

10

Jump-Ahead(A, y, i)
for j = 0 to 246

do if (i & (0x1)) == 1
then y = A^(2j) y mod 231 – 1

i = (i >> 1)

MRG8-AVX512: Optimization for KNL

■ Efficiently compute 23:0 = !0	23	=>?	9
with wide 512-bit vector register
– Generate 8 double elements in parallel
– Executed as outer product

■ Low cost of jump-ahead function
– Exploit high parallelism (up to 272 threads)

11

MRG8-GPU: Optimization for GPU

■ Efficiently compute 32 x 8 matrix-vector operation
– Computed as outer product
■ 1 threads compute one random number

– __umulhi() instruction
■ Multiplication between 32-bit unsigned integers and output is upper 32-bit of result
■ Reduce expensive mixed-precision integer multiplications

■ Too many threads require many “jump-ahead” procedure
– Carefully select best number of total threads with keeping high occupancy of

GPU

12

23:0
23:'.
23:(#
23:+(

=
!0
!'.
!(#
!+(

	23	mod	9

API of MRG8-AVX512/-GPU

■ Single generation: double rand();
– Each function call returns a single random number
– follows C and C++ standard API
– Low throughput due to the overhead of function call

■ Array generation: void rand(double *ran, int n);
– User provides a pointer to the array with the array size
– Array is filled with random numbers
– Adopted by Intel MKL and cuRAND

13

Model for Performance Upper Bound -1-

■ Performance upper bound for the Array generation
– Determined as min(pm, pc); memory-bound vs compute-bound use case
– Memory-bound case
■ Restricted by storing the generated random numbers to memory
■ Upper bound is estimated by memory bandwidth of STREAM benchmark

– Compute-bound case
■ Count the number of instructions
■ Only consider the kernel part excluding jump-ahead overhead

14

Model for Performance Upper Bound -2-

■ Intel KNL (MRG8-AVX512)
– Memory bandwidth is 166.6GB/sec => pm = 22.4 billion RNG/sec
– Compute-bound: pc = 34.6 billion RNG/sec
■ 44 instructions for 8 random number generation
■ 136 vector units (2 units/core) with 1.4GHz in Intel Xeon Phi Processor 7250

– 54 % better performance when the array size can fit entirely into L1 cach

■ NVIDIA P100 GPU (MRG8-GPU)
– Memory-bandwidth is 570.5GB/sec => pm = 76.6 billion RNG/sec
– Compute-bound: pc = 49.7 billion RNG/sec
■ 101 instructions for 1 random number generation
■ 3584 CUDA cores with 1.4 GHz in NVIDIA P100 GPU

– MRG8-GPU is a compute-bound kernel in all cases

15

Performance Evaluation

16

Evaluation Environment

■ Cori Phase 2 @NERSC
– Intel Xeon Phi 7250
■ Knights Landing (KNL)
■ 96GB DDR4 and 16GB MCDRAM
■ Quadrant/Cache mode
■ 68 cores, 1.4GHz

– Compiler
■ Intel C++ Compiler ver18.0.0

– OS
■ SuSE Linux Enterprise Server

■ TSUBAME-3.0 @TokyoTech
– NVIDIA Tesla P100
■ #SM: 56
■ Memory: 16GB

– Compiler
■ NVCC ver.8.0.61

– OS
■ SUSE Linux Enterprise Server 12 SP2

17

Evaluation Methodology

■ Generate 64-bit floating random number
■ Generating size

– Single generation
■ 2^24 random numbers

– Array generation
■ Large: 2^x (x=24~30)

– Fit into MCDRAM and global memory of GPU, but not cache
■ Small: 32, 64, 128 (only for Intel KNL)

– More practical case
– Repeat 1000 times by each thread on KNL
– Fit into L1 cache

18

Evaluation Methodology
PRNG Libraries

■ Single generation
– C++11 standard library
■ MT19937

■ Array generation
– Intel MKL
■ MT19937, MT2203, SFMT19937, MRG32K3A, PHILOX

– NVIDIA cuRAND
■ MT19937, SFMT19937, XORWOW, MRG32K3A, PHILOX

19

Performance on KNL
Single generation

■MRG8 shows good performance and scalability
– C++11 does not support jump-ahead

20

Performance on KNL
Array generation for large size

■MRG8 shows comparable performance to Philox
– Both close to the upper bound for memory bandwidth

21

Performance on KNL
Array generation for small size

■MRG8 overcomes the upper bound of memory bandwidth
– x1.69 faster than the other random number generations

22

Performance on KNL
Scalability

■ Performance goes down after 64 threads in MT19937 and SFMT
– Large jump-ahead cost

■MRG8 shows good scalability

23

Performance on KNL
Cost of jump-ahead

■ Jump-ahead becomes serious bottleneck on MT19937 and SFMT
– Limit scalability

■ Little cost for jump-ahead in MT2203, MRG32k3a, Philox and MRG8

24

Performance on GPU
Array generation

■MRG8 achieves high throughput for any random number sequence
length
– Up to x3.36 speedup

25

Memory Usage of MRG8

■ Small memory of many-core processors require less memory usage of
random number generator
– Memory usage of MRG8 is small and does not affect the applications

■MRG8-AVX512
– 8-by-8 matrix: A8 matrix and Ai for jump-ahead
– Thread private state vector
– 235 bytes / thread on 272 threads

■MRG8-CUDA
– 32-by-8 matrix and 8-by-8 matrix for jump-ahead
– State vector
– No more than 5 bytes per thread on 217 threads

26

Quality of Random Numbers

■ Test of statistical quality on TestU01
– Secured statistical quality of our MRG8 reimplementation

27

Period (MKL) Period (cuRAND) Test
MT19937 219937 - 1 219937 - 1
MT2203 22203 - 1 22203 - 1
SFMT19937 219937 - 1 -
MTGP - 219937 - 1
XORWOW - (2160 – 1) 232

MRG32k3a 2191 >2190 �
Philox 2130 2128 �
MRG8 (231 – 1)8 - 1 (231 – 1)8 - 1 �

Conclusion

■MRG8 is a high quality PRNG
– Key qualities of statistical uniformity
– Efficient parallelism
– Long recurrence length

■We reformulate the MRG8 for Intel KNL and NVIDIA P100 GPU
– Huge performance benefit from existing libraries
■ MRG8-AVX512 achieves a substantial 69% improvement
■ MRG8-GPU shows a maximum x3.36 speedup

■ Follow-up work
– Demonstrate the value in real applications

28

Code is available at https://github.com/kenmiura/mrg8

Acknowledgement

■ This work was partially supported by JST CREST Grant Number JP-
MJCR1303 and JPMJCR1687, and performed under the collaboration
with DENSO IT Laboratory, inc., and performed under the auspices of
Real-World Big-Data Computation Open Innovation Laboratory, Japan.
■ The Lawrence Berkeley National Laboratory portion of this research is

supported by the DoE Office of Advanced Scientific Computing
Research under contract DE-AC02-05CH11231.
■ One of the authors (KM) would like to thank Prof. Pierre L’Ecuyer of

Montreal University for providing the 8th order primitive polynomial for
this study.

29

