MRG8-Random Number Generation
for the Exascale Era

Yusuke Nagasaka®, Ken-ichi Miura*, John Shalf+*
Akira Nukadat, Satoshi Matsuoka$t

T Tokyo Institute of Technology
T Lawrence Berkeley National Laboratory
§ RIKEN Center for Computational Science

<
A
f(rrerer ﬂ

BERKELEY LAB
Tokyo Tech e

Random Number Generator

= Pseudo random number generator (PRNG) is a crucial component of
numerous algorithms and applications
- Quantum chemistry, molecular dynamics
- Broader classes of Monte Carlo algorithms

- Machine Learning field
m Shuffling of training data
m Initializing weights of neural network
m cf.) Numpy employs Mersenne Twister

m Pseudo and Real random number
m What is a requirement for “Good PRNG”?

Random Number Generator

— Quantum chem

Long recurrence length
- Broader classes 8 et

Good statistical quality
Deterministic Jump-ahead for parallelism
= Initializing weig Performance (throughput)

m cf.) Numpy emp
= Pseudo and Real rando
m What is a requirement for “Good PRNG”?

Recurrence Length

m PRNGs will eventually repeat themselves

- Eg.) LCG in the C standard library repeat themselves in as few as 2.15 * 10°
steps (too short)

— Much additional cost to erase the effect of auto-correlation
m Greatly reduce the effective performance of algorithm

- Minimum requirement is for an entire year of executing at full speed on a
supercomputer

| _MT19937 | MRG32K3a -ME-

Period 219937 _ 1 2191 2130 231 _

Statistical Quality

m Sequence must show no statistical bias
-~ Otherwise, PRNGs affect the outcome of a simulation

m TestUO1 developed by LEcuyer
- Benchmark set for empirical statistical testing of random number generators

- Three pre-defined battery
m Small Crush: 15 tests, using 2 random numbers
m Crush: 186 tests, using 2 random numbers
m Big Crush: 234 tests, using 2 random numbers

Jump-ahead for Parallelism

m Two primary approaches for parallelization of PRNG

— Multistream
m Different random “seed” to produce different random number sequence
m Overhead of setting the start point is not expensive
m Chance of correlated number sequences is not so low
- cf.) birthday paradox

Correlated

number
sequence

0 ThreadO

| |

Threadl Thread2

| |

L

Thread3

Jump-ahead for Parallelism

m Two primary approaches for parallelization of PRNG

- Substream (Jump-ahead)
m Each worker get a sub-sequence that is guaranteed to be non-overlapping with its peers
— Parallelization does not break the statistical quality of PRNGs
m Cost of jump-ahead may hurt parallel scalability

o) N*1/4 N*2/4 N=*3/4 N

AN/4-

ThreadO Thread1l | Thread2 Thread3

MRGS

m 8"-order full primitive polynomials
- One of multiple recursive generators

- Next random number is generated from previous random numbers with
polynomial
B X, =aiXng tAxXn, +AgXg + Xy T AsXys T AeXne T A7X7 T AgXg MoOd (2°F - 1)
m Modulo operation can be executed by “bit shift”, “bit and” and “plus” operation
m Long period

_ (231~ 1)8~ 4.5%10™

m Good statistical quality
— Pass Big crash of TestUO1

Contribution

m We reformulate the MRGS for Intel’'s KNL and NVIDIA’'s GPU
— Utilize wide 512-bit register
- Exploit parallelism of many-core processors

m Huge performance benefit from existing libraries
- MRG8-AVX512 achieves a substantial 69% improvement
- MRG8-GPU shows a maximum x3.36 speedup

m Secure the statistical quality and long period of original MRGS8

Reformulating to Matrix-Vector Operation

m Compute multiple next random numbers in one matrix-vector
operation

aq
(1
0

0

_ oo &
© oo R
o oO&
ISP
oo f§

ryn—l =

" Easily apply
J \x::;) vector/parallel

cocoool ol

—
O OO O
O OO O
S OO =
corR o
O RO O
_ oo O
O OO O

=

i

o

processing to
Mat-vec op

mmm=) Yn+8 = A® Yn mod p

Yn+16 | _ | A%
A8, A16, A24 and A32 V24
can be precomputed YVn+32 A32

Yn =AYyn_iymodp

|
<
3
3
o
.
=

Jump-ahead Random Sequence in MRGS8

m Jump-ahead to arbitrary point
- When jump to i-th point, compute A* y, mod p
- Implementation: Matrix-vector multiplication
= Precompute A% (j =0,1,2, ...,246)
m Compute A! y, mod p
~ Al = e Al x e A% x es At % . % ey AR (ej €{0,1})
- In the implementation, executed as mat-vec, not mat-mat

Jump-Ahead(A, Yy, i)
for j=0to 246
do if (i & (Ox1)) ==
theny = A*2)y mod 231 - 1
i=(i>>1)

MRG8-AVX512: Optimization for KNL

= Efficiently compute y,,.,g = A% y., mod p

with wide 512-bit vector register
- Generate 8 double elements in parallel
- Executed as outer product

m Low cost of jump-ahead function
— Exploit high parallelism (up to 272 threads)

MRGS8-AVX512(AKNL, Yn)

O g ON U bW

11

12
13
14
15
16

/ Generate eight 64-bit floating point random numbers
MASK « (231 -1)
s1 <0
s2 0
forg—0to3
do s1 « 81+ aqyn
/ PERMUTE(x) returns w s.t. w[i] = x[(i + 1)%8]

x < PERMUTE(y,)

forqg«—4to7
do s; < 53 + agyn
x < PERMUTE(yY,)

s « (s1&MASK) + (s1 >> 31) + (s2&MASK) + (s2 >> 31)
s « (S&MASK) + (s >> 31)

s «— (S&MASK) + (s >> 31)

Yn+g — S

r « (double)(s — 1)/ MASK

MRG8-GPU: Optimization for GPU

m Efficiently compute 32 x 8 matrix-vector operation

— Computed as outer product Yn+8 A8
16

m 1 threads compute one random number izzz = 324 y,, mod p
— __umulhi() instruction Vn+32 432

m Multiplication between 32-bit unsigned integers and output is upper 32-bit of result
m Reduce expensive mixed-precision integer multiplications

m Too many threads require many “jump-ahead” procedure

— Carefully select best number of total threads with keeping high occupancy of
GPU

API of MRG8-AVX512/-GPU

= Single generation: double rand();
- Each function call returns a single random number
— follows C and C++ standard API
-~ Low throughput due to the overhead of function call

m Array generation: void rand(double *ran, int n);
- User provides a pointer to the array with the array size

- Array is filled with random numbers
— Adopted by Intel MKL and cuRAND

Model for Performance Upper Bound -1-

m Performance upper bound for the Array generation
- Determined as min(p,,, p.); memory-bound vs compute-bound use case

- Memory-bound case

m Restricted by storing the generated random numbers to memory

m Upper bound is estimated by memory bandwidth of STREAM benchmark
- Compute-bound case

m Count the number of instructions
m Only consider the kernel part excluding jump-ahead overhead

Model for Performance Upper Bound -2-

m Intel KNL (MRG&-AVX512)
- Memory bandwidth is 166.6GB/sec => p,, = 22.4 billion RNG/sec
- Compute-bound: p, = 34.6 billion RNG/sec

m 44 instructions for 8 random number generation
m 136 vector units (2 units/core) with 1.4GHz in Intel Xeon Phi Processor 7250

- 94 % better performance when the array size can fit entirely into L1 cach

= NVIDIA P100 GPU (MRG8-GPU)
- Memory-bandwidth is 570.5GB/sec => p,, = 76.6 billion RNG/sec
- Compute-bound: p, = 49.7 billion RNG/sec

m 101 instructions for 1 random number generation
m 3584 CUDA cores with 1.4 GHz in NVIDIA P100 GPU

- MRGS8-GPU is a compute-bound kernel in all cases

Performance Evaluation

Evaluation Environment

m Cori Phase 2 @NERSC

— Intel Xeon Phi 7250
m Knights Landing (KNL)
m 96GB DDR4 and 16GB MCDRAM
m Quadrant/Cache mode
m 68 cores, 1.4GHz
- Compiler
m Intel C++ Compiler ver18.0.0
- 0S

m SuSE Linux Enterprise Server

= TSUBAME-3.0 @TokyoTech

— NVIDIA Tesla P100
m #SM: b6
= Memory: 16GB
— Compiler
m NVCC ver.8.0.61
- 0S
m SUSE Linux Enterprise Server 12 SP2

Evaluation Methodology

m Generate 64-bit floating random number

m Generating size

- Single generation
m 2724 random numbers

- Array generation
m Large: 2”x (x=24~30)
— Fitinto MCDRAM and global memory of GPU, but not cache
m Small: 32, 64, 128 (only for Intel KNL)
-~ More practical case
- Repeat 1000 times by each thread on KNL
- Fitinto L1 cache

Evaluation Methodology
PRNG Libraries

m Single generation

- C++11 standard library
= MT19937

m Array generation
- Intel MKL
= MT19937, MT2203, SFMT19937, MRG32K3A, PHILOX

- NVIDIA cuRAND
m MT19937, SFMT19937, XORWOW, MRG32K3A, PHILOX

Performance on KNL
Single generation

m MRGS8 shows good performance and scalability
- C++11 does not support jump-ahead

11
2 ——- C++11 —— MRG8-S —— MRGS (Parallel)

Million RNGs / second

Number of threads

Performance on KNL
Array generation for large size

Billion RNGs / second

= MRG8 shows comparable performance to Philox
- Both close to the upper bound for memory bandwidth

25 A —&— MT19937 —&— SFMT —+— Philox
- MT2203 —ili— MRG32k3a —&— MRGS8

> \
15 A > % »
10 49— - i
5 -

O T T T T T

224 225 226 227 228 229

Total number of RNGs

Performance on KNL
Array generation for small size

m MRGS8 overcomes the upper bound of memory bandwidth
- x1.69 faster than the other random number generations

—&— MT19937 —A&— SFMT —+— Philox
4 —¢— MT2203 —— MRG32k3a —&— MRGS8

N
(&)

-8
2 20
(&)
(O]
(7p]
» 15 1
O
pa
4
5 10-
= — =
5_
.——
0Ll = & =
2° 20 27

RNGs per each generation

Performance on KNL
Scalability

m Performance goes down after 64 threads in MT19937 and SFMT
- Large jump-ahead cost

m MRGS8 shows good scalability

25 _
—#«— MT19937 —A— SFMT —+— Philox 4
| =« MT2203 —— MRG32k3a —@— MRGS ' *—
©
[
(@)
O
Q
wn
n
O
Z
v
[
ie)
@
2
2

2I0 2I1 2I2 2I3 2I4 2I5 2I6 2I7 2I8
Number of threads

Performance on KNL
Cost of jump-ahead

m Jump-ahead becomes serious bottleneck on MT19937 and SFMT
— Limit scalability

m Little cost for jJump-ahead in MT2203, MRG32k3a, Philox and MRGS8

—&k— MT19937 —A&— SFMT —+— Philox
—¢— MT2203 —— MRG32k3a —&— MRGS8

Q
0 0]
1

o
(o))
1

o
~
1

Ratio of cost for jump-ahead

224 225 226 227 228 229 230
Total number of RNGs

Performance on GPU
Array generation

m MRGS8 achieves high throughput for any random number sequence

length
- Up to x3.36 speedup
—&— MT19937 —&— XORWOW -+ Philox
50 —é— MTGP —i— MRG32k3a —&— MRGS8 4
2
5 40
2
@ 30 -
O
Z
o
_5 20 -
E
10 1

257 258 2&9 230
Total number of RNGs

224 225 256

Memory Usage of MRGS8

m Small memory of many-core processors require less memory usage of
random number generator
- Memory usage of MRGS is small and does not affect the applications

m MRG8-AVX512
- 8-by-8 matrix: A% matrix and Al for jump-ahead
- Thread private state vector
- 235 bytes / thread on 272 threads

= MRG8-CUDA
- 32-by-8 matrix and 8-by-8 matrix for jump-ahead
— State vector
- No more than 5 bytes per thread on 217 threads

Quality of Random Numbers

m Test of statistical quality on TestUO1
- Secured statistical quality of our MRGS8 reimplementation

_ Period (MKL) Period (CuRAND)

MT19937 019937 _ 1 019937 _ 1

MT2203 02203 _ 1 02203 _ 1

SFMT19937 219937_1 i

MTGP : 019937 _ 1

XORWOW i (2160 _ 1) 232
MRG32k3a 2191 >0190 vV
Philox 2130 0128 vV
MRGS (231 - 1)8-1 (231 1)8-1 v

Conclusion

m MRGS8 is a high quality PRNG
- Key qualities of statistical uniformity
— Efficient parallelism
- Long recurrence length

m We reformulate the MRGS8 for Intel KNL and NVIDIA P100 GPU

- Huge performance benefit from existing libraries
m MRG8-AVX512 achieves a substantial 69% improvement
m MRG8-GPU shows a maximum x3.36 speedup

m Follow-up work
- Demonstrate the value in real applications

Code is available at https://github.com/kenmiura/mrg8 ‘

Acknowledgement

m This work was partially supported by JST CREST Grant Number JP-
MJCR1303 and JPMJCR1687, and performed under the collaboration
with DENSO IT Laboratory, inc., and performed under the auspices of
Real-World Big-Data Computation Open Innovation Laboratory, Japan.

m The Lawrence Berkeley National Laboratory portion of this research is
supported by the DoE Office of Advanced Scientific Computing
Research under contract DE-ACO2-05CH11231.

m One of the authors (KM) would like to thank Prof. Pierre LEcuyer of

Montreal University for providing the 8th order primitive polynomial for
this study.

