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Random Number Generator

= Pseudo random number generator (PRNG) is a crucial component of
numerous algorithms and applications
- Quantum chemistry, molecular dynamics
- Broader classes of Monte Carlo algorithms

- Machine Learning field
m Shuffling of training data
m Initializing weights of neural network
m cf.) Numpy employs Mersenne Twister

m Pseudo and Real random number
m What is a requirement for “Good PRNG”?




Random Number Generator

— Quantum chem

Long recurrence length
- Broader classes 8 et

Good statistical quality
Deterministic Jump-ahead for parallelism
= Initializing weig Performance (throughput)

m cf.) Numpy emp
= Pseudo and Real rando
m What is a requirement for “Good PRNG”?




Recurrence Length

m PRNGs will eventually repeat themselves

- Eg.) LCG in the C standard library repeat themselves in as few as 2.15 * 10°
steps (too short)

— Much additional cost to erase the effect of auto-correlation
m Greatly reduce the effective performance of algorithm

- Minimum requirement is for an entire year of executing at full speed on a
supercomputer
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Statistical Quality

m Sequence must show no statistical bias
-~ Otherwise, PRNGs affect the outcome of a simulation

m TestUO1 developed by LEcuyer
- Benchmark set for empirical statistical testing of random number generators

- Three pre-defined battery
m Small Crush: 15 tests, using 2 random numbers
m Crush: 186 tests, using 2 random numbers
m Big Crush: 234 tests, using 2 random numbers




Jump-ahead for Parallelism

m Two primary approaches for parallelization of PRNG

— Multistream
m Different random “seed” to produce different random number sequence
m Overhead of setting the start point is not expensive
m Chance of correlated number sequences is not so low
- cf.) birthday paradox
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Jump-ahead for Parallelism

m Two primary approaches for parallelization of PRNG

- Substream (Jump-ahead)
m Each worker get a sub-sequence that is guaranteed to be non-overlapping with its peers
— Parallelization does not break the statistical quality of PRNGs
m Cost of jump-ahead may hurt parallel scalability
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MRGS

m 8"-order full primitive polynomials
- One of multiple recursive generators

- Next random number is generated from previous random numbers with
polynomial
B X, =aiXng tAxXn, +AgXg + Xy T AsXys T AeXne T A7X7 T AgXg MoOd (2°F - 1)
m Modulo operation can be executed by “bit shift”, “bit and” and “plus” operation
m Long period
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m Good statistical quality
— Pass Big crash of TestUO1




Contribution

m We reformulate the MRGS for Intel’'s KNL and NVIDIA’'s GPU
— Utilize wide 512-bit register
- Exploit parallelism of many-core processors

m Huge performance benefit from existing libraries
- MRG8-AVX512 achieves a substantial 69% improvement
- MRG8-GPU shows a maximum x3.36 speedup

m Secure the statistical quality and long period of original MRGS8




Reformulating to Matrix-Vector Operation

m Compute multiple next random numbers in one matrix-vector
operation
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Jump-ahead Random Sequence in MRGS8

m Jump-ahead to arbitrary point
- When jump to i-th point, compute A* y, mod p
- Implementation: Matrix-vector multiplication
= Precompute A% (j =0,1,2, ...,246)
m Compute A! y, mod p
~ Al = e Al x e A% x es At % . % ey AR (ej €{0,1})
- In the implementation, executed as mat-vec, not mat-mat

Jump-Ahead(A, Yy, i)
for j=0to 246
do if (i & (Ox1)) ==
theny = A*2)y mod 231 - 1
i=(i>>1)




MRG8-AVX512: Optimization for KNL

= Efficiently compute y,,.,g = A% y., mod p

with wide 512-bit vector register
- Generate 8 double elements in parallel
- Executed as outer product

m Low cost of jump-ahead function
— Exploit high parallelism (up to 272 threads)

MRGS8-AVX512(AKNL, Yn)
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/ Generate eight 64-bit floating point random numbers
MASK « (231 -1)
s1 <0
s2 0
forg—0to3
do s1 « 81+ aqyn
/ PERMUTE(x) returns w s.t. w[i] = x[(i + 1)%8]

x < PERMUTE(y,)

forqg«—4to7
do s; < 53 + agyn
x < PERMUTE(yY,)

s « (s1&MASK) + (s1 >> 31) + (s2&MASK) + (s2 >> 31)
s « (S&MASK) + (s >> 31)

s «— (S&MASK) + (s >> 31)

Yn+g — S

r « (double)(s — 1)/ MASK



MRG8-GPU: Optimization for GPU

m Efficiently compute 32 x 8 matrix-vector operation

— Computed as outer product Yn+8 A8
16

m 1 threads compute one random number izzz = 324 y,, mod p
— __umulhi() instruction Vn+32 432

m Multiplication between 32-bit unsigned integers and output is upper 32-bit of result
m Reduce expensive mixed-precision integer multiplications

m Too many threads require many “jump-ahead” procedure

— Carefully select best number of total threads with keeping high occupancy of
GPU



API of MRG8-AVX512/-GPU

= Single generation: double rand();
- Each function call returns a single random number
— follows C and C++ standard API
-~ Low throughput due to the overhead of function call

m Array generation: void rand(double *ran, int n);
- User provides a pointer to the array with the array size

- Array is filled with random numbers
— Adopted by Intel MKL and cuRAND




Model for Performance Upper Bound -1-

m Performance upper bound for the Array generation
- Determined as min(p,,, p.); memory-bound vs compute-bound use case

- Memory-bound case

m Restricted by storing the generated random numbers to memory

m Upper bound is estimated by memory bandwidth of STREAM benchmark
- Compute-bound case

m Count the number of instructions
m Only consider the kernel part excluding jump-ahead overhead




Model for Performance Upper Bound -2-

m Intel KNL (MRG&-AVX512)
- Memory bandwidth is 166.6GB/sec => p,, = 22.4 billion RNG/sec
- Compute-bound: p, = 34.6 billion RNG/sec

m 44 instructions for 8 random number generation
m 136 vector units (2 units/core) with 1.4GHz in Intel Xeon Phi Processor 7250

- 94 % better performance when the array size can fit entirely into L1 cach

= NVIDIA P100 GPU (MRG8-GPU)
- Memory-bandwidth is 570.5GB/sec => p,, = 76.6 billion RNG/sec
- Compute-bound: p, = 49.7 billion RNG/sec

m 101 instructions for 1 random number generation
m 3584 CUDA cores with 1.4 GHz in NVIDIA P100 GPU

- MRGS8-GPU is a compute-bound kernel in all cases




Performance Evaluation




Evaluation Environment

m Cori Phase 2 @NERSC

— Intel Xeon Phi 7250
m Knights Landing (KNL)
m 96GB DDR4 and 16GB MCDRAM
m Quadrant/Cache mode
m 68 cores, 1.4GHz
- Compiler
m Intel C++ Compiler ver18.0.0
- 0S

m SuSE Linux Enterprise Server

= TSUBAME-3.0 @TokyoTech

— NVIDIA Tesla P100
m #SM: b6
= Memory: 16GB
— Compiler
m NVCC ver.8.0.61
- 0S
m SUSE Linux Enterprise Server 12 SP2



Evaluation Methodology

m Generate 64-bit floating random number

m Generating size

- Single generation
m 2724 random numbers

- Array generation
m Large: 2”x ( x=24~30)
— Fitinto MCDRAM and global memory of GPU, but not cache
m Small: 32, 64, 128 (only for Intel KNL)
-~ More practical case
- Repeat 1000 times by each thread on KNL
- Fitinto L1 cache




Evaluation Methodology
PRNG Libraries

m Single generation

- C++11 standard library
= MT19937

m Array generation
- Intel MKL
= MT19937, MT2203, SFMT19937, MRG32K3A, PHILOX

- NVIDIA cuRAND
m MT19937, SFMT19937, XORWOW, MRG32K3A, PHILOX




Performance on KNL
Single generation

m MRGS8 shows good performance and scalability
- C++11 does not support jump-ahead
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Performance on KNL
Array generation for large size

Billion RNGs / second

= MRG8 shows comparable performance to Philox
- Both close to the upper bound for memory bandwidth
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Performance on KNL
Array generation for small size

m MRGS8 overcomes the upper bound of memory bandwidth
- x1.69 faster than the other random number generations
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Performance on KNL
Scalability

m Performance goes down after 64 threads in MT19937 and SFMT
- Large jump-ahead cost

m MRGS8 shows good scalability
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Performance on KNL
Cost of jump-ahead

m Jump-ahead becomes serious bottleneck on MT19937 and SFMT
— Limit scalability

m Little cost for jJump-ahead in MT2203, MRG32k3a, Philox and MRGS8
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Performance on GPU
Array generation

m MRGS8 achieves high throughput for any random number sequence

length
- Up to x3.36 speedup
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Memory Usage of MRGS8

m Small memory of many-core processors require less memory usage of
random number generator
- Memory usage of MRGS is small and does not affect the applications

m MRG8-AVX512
- 8-by-8 matrix: A% matrix and Al for jump-ahead
- Thread private state vector
- 235 bytes / thread on 272 threads

= MRG8-CUDA
- 32-by-8 matrix and 8-by-8 matrix for jump-ahead
— State vector
- No more than 5 bytes per thread on 217 threads




Quality of Random Numbers

m Test of statistical quality on TestUO1
- Secured statistical quality of our MRGS8 reimplementation

_ Period (MKL) Period (CuRAND)

MT19937 019937 _ 1 019937 _ 1

MT2203 02203 _ 1 02203 _ 1

SFMT19937  219937_1 i

MTGP : 019937 _ 1

XORWOW i (2160 _ 1) 232
MRG32k3a 2191 >0190 vV
Philox 2130 0128 vV
MRGS (231 - 1)8-1 (231 1)8-1 v



Conclusion

m MRGS8 is a high quality PRNG
- Key qualities of statistical uniformity
— Efficient parallelism
- Long recurrence length

m We reformulate the MRGS8 for Intel KNL and NVIDIA P100 GPU

- Huge performance benefit from existing libraries
m MRG8-AVX512 achieves a substantial 69% improvement
m MRG8-GPU shows a maximum x3.36 speedup

m Follow-up work
- Demonstrate the value in real applications

Code is available at https://github.com/kenmiura/mrg8 ‘
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