
High-performance and
Memory-saving

Sparse General Matrix-Matrix
Multiplication for Pascal GPU

Yusuke Nagasaka, Akira Nukada, Satoshi Matsuoka
Tokyo Institute of Technology

Sparse General Matrix-Matrix Multiplication
(SpGEMM)

■ Numerical application, graph processing
– AMG method, graph clustering

■ Low performance
– Non-zero pattern of output matrix is unknown before execution
■ Accumulate intermediate products into one non-zero element
■ Hard to manage memory allocation

1

a b

c

d

e

f g

h i

ae+
bh bi
ce

df dg

a b

c

d

0 2

0

1

0

2

3

4

e

gf

h

1

10

2

0

1

3

5

1 2

1

0

0

2

3

5

i 3

ae+
bh bi
ce

df dg 1

value column

Row pointer
Sparse matrix in CSR format

Accumulation of intermediate products
Sparse Accumulator (SPA) [Gilbert, SIAM1992]

2

0 0

SPA

value

index 0 2

0 0ah ai

bit flag 0 0 0 01 1

ah+
bk

ai+
bl

cj

dk dl

eh fj ei gm

a b
c

d
e f g

h i
j

k l
m

Input Matrices Output Matrices

a b
c
d
e f g

h i
j
k l
m

0 2
3
0 2
1

0 2
1
2
0 1 3

Value Column id

Input matrices in sparse format

Accumulation of intermediate products
Sparse Accumulator (SPA) [Gilbert, SIAM1992]

3

0 0

SPA

value

index 0 2

0 0ah ai
ah
+
bk

ai
+
bl

bit flag 0 0 0 01 1

ah+
bk

ai+
bl

cj

dk dl

eh fj ei gm

a b
c

d
e f g

h i
j

k l
m

Input Matrices Output Matrices

a b
c
d
e f g

h i
j
k l
m

0 2
3
0 2
1

0 2
1
2
0 1 3

Value Column id

Input matrices in sparse format

Accumulation of intermediate products
Sparse Accumulator (SPA) [Gilbert, SIAM1992]

4

0 0

SPA

value

index 0 2

0 0ah ai
ah
+
bk

ai
+
bl

value

index 0 2

ah
+
bk

ai
+
bl

0th row of Output

bit flag 0 0 0 01 1

ah+
bk

ai+
bl

cj

dk dl

eh fj ei gm

a b
c

d
e f g

h i
j

k l
m

Input Matrices Output Matrices

a b
c
d
e f g

h i
j
k l
m

0 2
3
0 2
1

0 2
1
2
0 1 3

Value Column id

Input matrices in sparse format

Accumulation of intermediate products
Sparse Accumulator (SPA) [Gilbert, SIAM1992]

5

0 0

SPA

value

index 0 2

0 0ah ai
ah
+
bk

ai
+
bl

value

index 0 2

ah
+
bk

ai
+
bl

0th row of Output

bit flag 0 0 0 01 1

ah+
bk

ai+
bl

cj

dk dl

eh fj ei gm

a b
c

d
e f g

h i
j

k l
m

Input Matrices Output Matrices

a b
c
d
e f g

h i
j
k l
m

0 2
3
0 2
1

0 2
1
2
0 1 3

Value Column id

Input matrices in sparse format

J Efficient accumulation of intermediate
products: Lookup cost is O(1)
L Require O(#columns) memory by one thread

Memory Allocation of Output Matrix

■ Non-zero pattern of output is unknown before execution
– Cannot allocate exact memory space for output before

execution

■ Two ways for allocation of output
– 1-phase
■ Allocate enough large memory space for output

– 2-phase
■ Count #non-zero of output, then allocate memory for output

6

Computation cost Memory usage Libraries

1-phase Low Large CUSP, BHSPARSE

2-phase High Small cuSPARSE

SpGEMM on GPU

■ Massive parallelism
– Simple row/column-based parallelization causes load-

imbalance
■ Largely different computation cost by row/column

■ Difficulty of memory management
– Small global memory
■ Up to 16GB (P100 GPU)

– Hierarchical memory
■ Shared memory (fast, but only 64KB/SM on P100)

7

Contribution

■ We propose GPU-optimized fast SpGEMM algorithm with
low memory usage
– Efficiently manage column index of output matrix and

accumulate intermediate products by hash table
■ Utilize GPU’s shared memory for hash table

– Make row groups by the number of non-zero elements or
intermediate products to improve load balance

– Evaluate the performance of SpGEMM for the Sparse Matrix
Collection from University Florida
■ Up to x4.3 in single precision, x4.4 in double precision
■ Memory usage is reduced by

– 14.7% in single precision
– 10.9% in double precision

8

Related work (1)

■ ESC Algorithm [Bell, SIAM2012]
– Expansion: Generate the list of all intermediate products
– Sorting by column and row indices
– Contraction: Accumulate intermediate products
– Each part can be executed with high parallelism
■ Whole performance is low since ESC requires large memory access, and

also large memory space

■ BHSPARSE [Liu, IPDPS2014]
– For irregular matrices
– Binning by the number of intermediate products per row
■ Switch the algorithms of accumulation by bin

– Heap method, bitonic ESC method, mergepath
■ Better load-balance

9

Related work (2)

■ Balanced Hash [Anh, ICS’16]
– Improve load balance
■ Worklist: pair of indices for computation of intermediate products

– Worklist is stored on global memory

– Improve the process of accumulation
■ Use hash table

– Fixed size of hash table on shared memory
■ Waste shared memory when the number of non-zero is small

– When hash collision occurs, the products are added to queue
■ Store the calculated elements in the table to memory, refresh table, and

then process the products in queue
■ Repeat until queue becomes empty
■ Additional memory usage and memory access to queue

10

Proposed Algorithm
Key Points

■ Two-phase execution
– (1 - 4): Count #non-zero

elements of output matrix
– (6 - 7): Calculate output matrix
– Minimize the usage of memory

11

(2) Divide the rows into groups by
#intermediate products

(1) Count #intermediate products

(3) Count #non-zero elements

(6) Divide the rows into groups by
#non-zero elements

(4) Set row pointers of output matrix

(7) Compute the output matrix
a. Calculate values and column

indices on hash table
b. Shrink the hash table
c. Store to the memory with sorting

(5) Memory allocation of output matrix

Proposed Algorithm
Key Points

■ Utilize hash table for accumulator
– Allocated on fast shared memory

■ Divide the rows into groups by #intermediate
products or #non-zero elements
– Improve load balance by appropriate thread assignment
– Better utilization of shared memory by coordinating hash

table size

12

Proposed Algorithm
Count #intermediate products / Grouping

■ Rows are divided into several
groups by #intermediate
products or non-zero elements
– Improve the load-balance
– Utilize shared memory
– #intermediate products is upper

bound of #non-zero elements
■ Counting cost of #intermediate product

is relatively small

13

(2) Divide the rows into groups by
#intermediate products

(1) Count #intermediate products

(3) Count #non-zero elements

(6) Divide the rows into groups by
#non-zero elements

(4) Set row pointers of output matrix

(7) Compute the output matrix
a. Calculate values and column

indices on hash table
b. Shrink the hash table
c. Store to the memory with sorting

(5) Memory allocation of output matrix

Proposed Algorithm
Count #Non-zero Elements / Compute the output

■ Two-way thread assignment and
memory access to input matrices
for load-balance
– Appropriate thread assignment for

both dense row and sparse row
■ Column indices of output matrix

are managed by hash table
– Tables are on shared memory

■ CUDA kernel for each group
– In order to execute concurrently,

each kernel is assigned to different
CUDA stream

14

(2) Divide the rows into groups by
#intermediate products

(1) Count #intermediate products

(3) Count #non-zero elements

(6) Divide the rows into groups by
#non-zero elements

(4) Set row pointers of output matrix

(7) Compute the output matrix
a. Calculate values and column

indices on hash table
b. Shrink the hash table
c. Store to the memory with sorting

(5) Memory allocation of output matrix

Proposed Algorithm
Two-ways thread Assignment -1-

■ PWARP/ROW: Partial warp / row
– Partial warp means a bundle of 4 threads
– 1 pwarp for each row of matrix A, and 1 thread for each non-

zero element of A and corresponding row of B
– Selected for the groups with sparser rows

15

a b
c

d
e f g

h i
j

k l
m

PWARP

T
0

T
1

T
0

T
1

T
1

T
0

Proposed Algorithm
Two-ways thread Assignment -2-

■ TB/ROW: Thread block / row
– Assign 1 thread block (TB) for each row of matrix A, 1 warp for

each non-zero element of A, and 1thread for each non-zero
element of B

– Selected for the groups with denser rows

16

a b
c

d
e f g

h i
j

k l
m

TB

W
A
R
P

T
0

T
0

T
1

T
1

W
A
R
P

Proposed Algorithm
Hash Table

17

a b

c

d

e

f g

h i

hash(1)=0

Hash table for 0th row

1

hash(1)=0 hash(2)=0

■ Key is column index of B
– if empty, add the element
■ compare-and-swap
■ Each thread counts the number

of non-zero elements

– Linear probing
■ When the hash is collided, the

algorithm tries next entry

2

Proposed Algorithm
Count #non-zero elements

■ Accumulate the number of non-
zero counted by each row
– PWARP/ROW: Utilizing warp shuffle
– TB/ROW: Accumulate by warp

shuffle in warp level, and then
accumulate the sum of each warp
by using shared memory

18

(2) Divide the rows into groups by
#intermediate products

(1) Count #intermediate products

(3) Count #non-zero elements

(6) Divide the rows into groups by
#non-zero elements

(4) Set row pointers of output matrix

(7) Compute the output matrix
a. Calculate values and column

indices on hash table
b. Shrink the hash table
c. Store to the memory with sorting

(5) Memory allocation of output matrix

Proposed Algorithm
Compute the output matrix

■ Calculate values and column
index as well as counting #non-
zero
– Allocate another hash table for

value
– Accumulate the value by atomicAdd

■ Shrink table to hold only non-zero
■ Output with sorting by column

index

19

(2) Divide the rows into groups by
#intermediate products

(1) Count #intermediate products

(3) Count #non-zero elements

(6) Divide the rows into groups by
#non-zero elements

(4) Set row pointers of output matrix

(7) Compute the output matrix
a. Calculate values and column

indices on hash table
b. Shrink the hash table
c. Store to the memory with sorting

(5) Memory allocation of output matrix

Performance
Evaluation

20

Experimental Setup

■ Pascal GPU Machine
– CPU : Intel Xeon CPU E5-2650 v3
– GPU : NVIDIA Tesla P100
■ SM : 56
■ CUDA cores : 3584 (64[/SM])
■ Memory size : 16 [GB]
■ Memory bandwidth : 732 [GB/sec]
■ ECC : Off
■ L2 cache size : 4[MB]

– CUDA : Version 8.0
– OS : CentOS release 7.2.1511

21

Experimental Setup

■ Sparse Libraries
– cuSPARSE
■ CUDA 8.0 version

– CUSP : ESC algorithm [Dalton, 2014]
■ v0.5.1

– BHSPARSE [Liu, IPDPS2014]
■ Effective for irregular matrices

■ FLOPS Performance
– Evaluate the performance of A^2
■ #(intermediate products) * 2 / (execution time)

22

Matrix Data
Florida Sparse Matrix Collection

23

Name Row Non-zero Nnz /row Max nnz
/ row

Intermediate
product of A^2

Nnz of A^2

Protein 36,417 4,344,765 119.3 204 555,322,659 19,594,581
FEM /Spheres 83,334 6,010,480 72.1 81 463,845,030 26,539,736
FEM /Cantilever 62,451 4,007,383 64.2 78 269,486,473 17,440,029
FEM /Ship 140,874 7,813,404 55.5 102 450,639,288 24,086,412
Wind Tunnel 217,918 11,634,424 53.4 180 626,054,402 32,772,236
FEM /Harbor 46,835 2,374,001 50.7 145 156,480,259 7,900,917
QCD 49,152 1,916,928 39.0 39 74,760,192 10,911,744
FEM /Accelerator 121,192 2,624,331 21.7 81 79,883,385 18,705,069
Economics 206,500 1,273,389 6.2 44 7,556,897 6,704,899
Circuit 170,998 958,936 5.6 353 8,676,313 5,222,525
Epidemiology 525,825 2,100,225 4.0 4 8,391,680 5,245,952
webbase 1,000,005 3,105,536 3.1 4700 69,524,195 51,111,996
cage15 5,154,859 99,199,551 19.2 47 2,078,631,615 929,023,247
wb-edu 9,845,725 57,156,537 5.8 3841 1,559,579,990 630,077,764
cit-Patents 3,774,768 16,518,948 4.4 770 82,152,992 68,848,721

High-Throughput Matrix Data Low-Throughput Matrix Data Large-size Graph Data

Parameter Setting for P100 GPU

(3) #intermediate
products

(6) #non-zero
elements

Assignment Thread block size

8193 - 4097 - TB / ROW 1024

4097 - 8192 2049 - 4096 TB / ROW 1024

2049 - 4096 1025 - 2048 TB / ROW 512

1025 - 2048 513~1024 TB / ROW 256

513~1024 257 - 512 TB / ROW 128

33 - 512 17 - 256 TB / ROW 64

0 - 32 0 - 16 PWARP / ROW 512

24

On shared
memory

On global
memory

Performance -Single Precision-
High-Throughput Matrix Data

■ Proposal > cuSPARSE > BHSPARSE
– Speedup is up to x2.26

25

0

5

10

15

20

25

30

35

40

G
FL
O
PS

CUSP cuSPARSE BHSPARSE PROPOSAL

Performance -Single Precision-
Low-Throughput Matrix Data

■ Proposal > BHSPARSE > cuSPARSE
■ Dividing rows into groups improves load-balance for

irregular matrices like ‘webbase’
– Speedup is up to x4.3

26
0

1

2

3

4

5

6

Economics Circuit Epidemiology webbase

G
FL
O
PS

CUSP cuSPARSE BHSPARSE PROPOSAL

Performance -Double Precision-
High-Throughput Matrix Data

■ Similar performance
trend as single
precision
– Speedup is up to x2.1

for High-Throughput
– Speedup is up to x4.4

for Low-Throughput

27

0

5

10

15

20

25

30

35

G
FL
O
PS

CUSP cuSPARSE BHSPARSE PROPOSAL

0

1

2

3

4

5

6

Economics Circuit Epidemiology webbase

G
FL
O
PS

CUSP cuSPARSE BHSPARSE PROPOSAL

Performance -Double Precision-
Large-size Graph Data

■ Our approach shows significant speedups for large size
graph data
– BHSPARSE cannot handle ‘cage15’ and ‘wb-edu’ because of

memory shortage

28

Precision Matrix CUSP cuSPARSE BHSPARSE PROPOSAL
Speedup from
cuSPRASE

Speedup from
BHSPARSE

Single cage15 - 0.519 - 5.955 x11.5 -

wb-edu - 2.348 - 5.403 x2.4 -

cit-Patents 0.837 0.028 0.880 3.351 x119.6 x3.8

Double cage15 - 0.491 - 5.684 x11.6 -

wb-edu - 2.145 - 4.618 x2.2 -

cit-Patents 0.780 0.028 0.813 2.980 x106.8 x3.7
[GFLOPS]

Memory Usage

■ Lower memory usage compared to other sparse matrix
libraries for all matrix data
– Compared to cuSPARSE, reduced by 14.7% in single precision

and 10.9% in double precision on average
– For the matrix data webbase, our proposal not only achieves

better performance but also reduces memory usage by 67.7%

29

0

500

1000

1500

2000

2500

Protein FEM/Spheres webbase Protein FEM/Spheres webbase

single double

M
By
te

CUSP cuSPARSE BHSPARSE PROPOSAL

Lo
w

er
 is

 b
et

te
r

Conclusion

■ We propose fast and memory-saving SpGEMM
algorithm for GPU
– Appropriate grouping and utilizing shared memory
– Performance evaluation with cuSPARSE and BHSPARSE
■ Speedups are up to x4.3 in single precision and x4.4 in double precision
■ Memory usage is reduce by 14.7% in single precision and 10.9% in

double precision on average
■ For Low-Throughput matrix, our algorithm achieves higher performance

and reduces memory usage by 67.7%

■ Future work
– Evaluate on AMD GPU and Xeon Phi
– Evaluate our SpGEMM algorithm in real-world application

30

Acknowledgement

■ This work is partially supported by by JST CREST Grant
Number JPMJCR1303 and JPMJCR1687

■ Source code of proposed SpGEMM algorithm for GPU is
released under nsparse library
– https://github.com/EBD-CREST/nsparse

31

Backup

32

Performance Breakdown

■ Largely reduce calculation time from cuSPARSE
■ Grouping phase affects little to total performance
■ On sparser matrices, cudaMalloc becomes bottleneck

33

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

cu
SP

AR
SE

PR
O

PO
SA

L

cu
SP

AR
SE

PR
O

PO
SA

L

cu
SP

AR
SE

PR
O

PO
SA

L

cu
SP

AR
SE

PR
O

PO
SA

L

cu
SP

AR
SE

PR
O

PO
SA

L

cu
SP

AR
SE

PR
O

PO
SA

L

cu
SP

AR
SE

PR
O

PO
SA

L

cu
SP

AR
SE

PR
O

PO
SA

L

cu
SP

AR
SE

PR
O

PO
SA

L

cu
SP

AR
SE

PR
O

PO
SA

L

cu
SP

AR
SE

PR
O

PO
SA

L

cu
SP

AR
SE

PR
O

PO
SA

L

Protein FEM/Spheres FEM/Cantilever FEM/Ship Wind Tunnel FEM/Harbor QCD FEM/Accelerator Economics Circuit Epidemiology webbase

E
xe

cu
tio

n
Ti

m
e

R
at

io

setup count calculation cudaMalloc

