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Sparse General Matrix-Matrix Multiplication 
(SpGEMM)

■ Numerical application, graph processing
– AMG method, graph clustering

■ Low performance
– Non-zero pattern of output matrix is unknown before execution
■ Accumulate intermediate products into one non-zero element
■ Hard to manage memory allocation
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Accumulation of intermediate products
Sparse Accumulator (SPA) [Gilbert, SIAM1992]
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Accumulation of intermediate products
Sparse Accumulator (SPA) [Gilbert, SIAM1992]
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Accumulation of intermediate products
Sparse Accumulator (SPA) [Gilbert, SIAM1992]
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J Efficient accumulation of intermediate 
products: Lookup cost is O(1)
L Require O(#columns) memory by one thread



Memory Allocation of Output Matrix

■ Non-zero pattern of output is unknown before execution
– Cannot allocate exact memory space for output before 

execution

■ Two ways for allocation of output
– 1-phase
■ Allocate enough large memory space for output

– 2-phase
■ Count #non-zero of output, then allocate memory for output
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Computation cost Memory usage Libraries

1-phase Low Large CUSP, BHSPARSE

2-phase High Small cuSPARSE



SpGEMM on GPU

■ Massive parallelism
– Simple row/column-based parallelization causes load-

imbalance
■ Largely different computation cost by row/column

■ Difficulty of memory management
– Small global memory
■ Up to 16GB (P100 GPU)

– Hierarchical memory
■ Shared memory (fast, but only 64KB/SM on P100)
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Contribution

■ We propose GPU-optimized fast SpGEMM algorithm with 
low memory usage
– Efficiently manage column index of output matrix and 

accumulate intermediate products by hash table
■ Utilize GPU’s shared memory for hash table

– Make row groups by the number of non-zero elements or 
intermediate products to improve load balance

– Evaluate the performance of SpGEMM for the Sparse Matrix 
Collection from University Florida
■ Up to x4.3 in single precision, x4.4 in double precision
■ Memory usage is reduced by

– 14.7% in single precision
– 10.9% in double precision
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Related work (1)

■ ESC Algorithm [Bell, SIAM2012]
– Expansion: Generate the list of all intermediate products
– Sorting by column and row indices
– Contraction: Accumulate intermediate products
– Each part can be executed with high parallelism
■ Whole performance is low since ESC requires large memory access, and 

also large memory space

■ BHSPARSE [Liu, IPDPS2014]
– For irregular matrices
– Binning by the number of intermediate products per row
■ Switch the algorithms of accumulation by bin

– Heap method, bitonic ESC method, mergepath
■ Better load-balance
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Related work (2)

■ Balanced Hash [Anh, ICS’16]
– Improve load balance
■ Worklist: pair of indices for computation of intermediate products

– Worklist is stored on global memory

– Improve the process of accumulation
■ Use hash table

– Fixed size of hash table on shared memory
■ Waste shared memory when the number of non-zero is small

– When hash collision occurs, the products are added to queue
■ Store the calculated elements in the table to memory, refresh table, and 

then process the products in queue
■ Repeat until queue becomes empty
■ Additional memory usage and memory access to queue
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Proposed Algorithm
Key Points

■ Two-phase execution
– (1 - 4): Count #non-zero 

elements of output matrix
– (6 - 7): Calculate output matrix
– Minimize the usage of memory
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Proposed Algorithm
Key Points

■ Utilize hash table for accumulator
– Allocated on fast shared memory

■ Divide the rows into groups by #intermediate 
products or #non-zero elements
– Improve load balance by appropriate thread assignment
– Better utilization of shared memory by coordinating hash 

table size
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Proposed Algorithm
Count #intermediate products / Grouping

■ Rows are divided into several 
groups by #intermediate 
products or non-zero elements
– Improve the load-balance
– Utilize shared memory
– #intermediate products is upper 

bound of #non-zero elements
■ Counting cost of #intermediate product 

is relatively small
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Proposed Algorithm
Count #Non-zero Elements / Compute the output

■ Two-way thread assignment and 
memory access to input matrices 
for load-balance
– Appropriate thread assignment for 

both dense row and sparse row
■ Column indices of output matrix 

are managed by hash table
– Tables are on shared memory

■ CUDA kernel for each group
– In order to execute concurrently, 

each kernel is assigned to different 
CUDA stream
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Proposed Algorithm
Two-ways thread Assignment -1-

■ PWARP/ROW: Partial warp / row
– Partial warp means a bundle of 4 threads
– 1 pwarp for each row of matrix A, and 1 thread for each non-

zero element of A and corresponding row of B
– Selected for the groups with sparser rows
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Proposed Algorithm
Two-ways thread Assignment -2-

■ TB/ROW: Thread block / row
– Assign 1 thread block (TB) for each row of matrix A, 1 warp for 

each non-zero element of A, and 1thread for each non-zero 
element of B

– Selected for the groups with denser rows
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Proposed Algorithm
Hash Table
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■ Key is column index of B
– if empty, add the element
■ compare-and-swap
■ Each thread counts the number 

of non-zero elements

– Linear probing
■ When the hash is collided, the 

algorithm tries next entry
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Proposed Algorithm
Count #non-zero elements

■ Accumulate the number of non-
zero counted by each row
– PWARP/ROW: Utilizing warp shuffle
– TB/ROW: Accumulate by warp 

shuffle in warp level, and then 
accumulate the sum of each warp 
by using shared memory
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Proposed Algorithm
Compute the output matrix

■ Calculate values and column 
index as well as counting #non-
zero
– Allocate another hash table for 

value
– Accumulate the value by atomicAdd

■ Shrink table to hold only non-zero
■ Output with sorting by column 

index
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Performance
Evaluation
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Experimental Setup

■ Pascal GPU Machine
– CPU : Intel Xeon CPU E5-2650 v3
– GPU : NVIDIA Tesla P100
■ SM : 56
■ CUDA cores : 3584 (64[/SM])
■ Memory size : 16 [GB]
■ Memory bandwidth : 732 [GB/sec]
■ ECC : Off
■ L2 cache size : 4[MB]

– CUDA : Version 8.0
– OS : CentOS release 7.2.1511
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Experimental Setup

■ Sparse Libraries
– cuSPARSE
■ CUDA 8.0 version

– CUSP : ESC algorithm [Dalton, 2014]
■ v0.5.1

– BHSPARSE [Liu, IPDPS2014]
■ Effective for irregular matrices

■ FLOPS Performance
– Evaluate the performance of A^2
■ #(intermediate products) * 2 / (execution time)
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Matrix Data
Florida Sparse Matrix Collection
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Name Row Non-zero Nnz /row Max nnz
/ row

Intermediate 
product of A^2

Nnz of A^2

Protein 36,417 4,344,765 119.3 204 555,322,659 19,594,581
FEM /Spheres 83,334 6,010,480 72.1 81 463,845,030 26,539,736
FEM /Cantilever 62,451 4,007,383 64.2 78 269,486,473 17,440,029
FEM /Ship 140,874 7,813,404 55.5 102 450,639,288 24,086,412
Wind Tunnel 217,918 11,634,424 53.4 180 626,054,402 32,772,236
FEM /Harbor 46,835 2,374,001 50.7 145 156,480,259 7,900,917
QCD 49,152 1,916,928 39.0 39 74,760,192 10,911,744
FEM /Accelerator 121,192 2,624,331 21.7 81 79,883,385 18,705,069
Economics 206,500 1,273,389 6.2 44 7,556,897 6,704,899
Circuit 170,998 958,936 5.6 353 8,676,313 5,222,525
Epidemiology 525,825 2,100,225 4.0 4 8,391,680 5,245,952
webbase 1,000,005 3,105,536 3.1 4700 69,524,195 51,111,996
cage15 5,154,859 99,199,551 19.2 47 2,078,631,615 929,023,247
wb-edu 9,845,725 57,156,537 5.8 3841 1,559,579,990 630,077,764
cit-Patents 3,774,768 16,518,948 4.4 770 82,152,992 68,848,721

High-Throughput Matrix Data Low-Throughput Matrix Data Large-size Graph Data



Parameter Setting for P100 GPU

(3) #intermediate 
products

(6) #non-zero 
elements

Assignment Thread block size

8193 - 4097 - TB / ROW 1024

4097 - 8192 2049 - 4096 TB / ROW 1024

2049 - 4096 1025 - 2048 TB / ROW 512

1025 - 2048 513~1024 TB / ROW 256

513~1024 257 - 512 TB / ROW 128

33 - 512 17 - 256 TB / ROW 64

0 - 32 0 - 16 PWARP / ROW 512
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Performance -Single Precision-
High-Throughput Matrix Data

■ Proposal > cuSPARSE > BHSPARSE
– Speedup is up to x2.26
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Performance -Single Precision-
Low-Throughput Matrix Data

■ Proposal > BHSPARSE > cuSPARSE
■ Dividing rows into groups improves load-balance for 

irregular matrices like ‘webbase’
– Speedup is up to x4.3
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Performance -Double Precision-
High-Throughput Matrix Data

■ Similar performance 
trend as single 
precision
– Speedup is up to x2.1

for High-Throughput
– Speedup is up to x4.4

for Low-Throughput
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Performance -Double Precision-
Large-size Graph Data

■ Our approach shows significant speedups for large size 
graph data
– BHSPARSE cannot handle ‘cage15’ and ‘wb-edu’ because of 

memory shortage
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Precision Matrix CUSP cuSPARSE BHSPARSE PROPOSAL
Speedup from 
cuSPRASE

Speedup from 
BHSPARSE

Single cage15 - 0.519 - 5.955 x11.5 -

wb-edu - 2.348 - 5.403 x2.4 -

cit-Patents 0.837 0.028 0.880 3.351 x119.6 x3.8

Double cage15 - 0.491 - 5.684 x11.6 -

wb-edu - 2.145 - 4.618 x2.2 -

cit-Patents 0.780 0.028 0.813 2.980 x106.8 x3.7
[GFLOPS]



Memory Usage

■ Lower memory usage compared to other sparse matrix 
libraries for all matrix data
– Compared to cuSPARSE, reduced by 14.7% in single precision 

and 10.9% in double precision on average
– For the matrix data webbase, our proposal not only achieves 

better performance but also reduces memory usage by 67.7%
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Conclusion

■ We propose fast and memory-saving SpGEMM 
algorithm for GPU
– Appropriate grouping and utilizing shared memory
– Performance evaluation with cuSPARSE and BHSPARSE
■ Speedups are up to x4.3 in single precision and x4.4 in double precision
■ Memory usage is reduce by 14.7% in single precision and 10.9% in 

double precision on average
■ For Low-Throughput matrix, our algorithm achieves higher performance 

and reduces memory usage by 67.7%

■ Future work
– Evaluate on AMD GPU and Xeon Phi
– Evaluate our SpGEMM algorithm in real-world application
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Backup
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Performance Breakdown

■ Largely reduce calculation time from cuSPARSE
■ Grouping phase affects little to total performance
■ On sparser matrices, cudaMalloc becomes bottleneck
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