High-performance and Memory-saving Sparse General Matrix-Matrix Multiplication for Pascal GPU

Yusuke Nagasaka, Akira Nukada, Satoshi Matsuoka Tokyo Institute of Technology

Sparse General Matrix-Matrix Multiplication (SpGEMM)

- Numerical application, graph processing
 - AMG method, graph clustering
- Low performance
 - Non-zero pattern of output matrix is unknown before execution
 - Accumulate intermediate products into one non-zero element
 - Hard to manage memory allocation

Sparse matrix in CSR format

Output Matrices

Efficient accumulation of intermediate
 products: Lookup cost is O(1)
 Require O(#columns) memory by one thread

Memory Allocation of Output Matrix

Non-zero pattern of output is unknown before execution

- Cannot allocate exact memory space for output before execution
- Two ways for allocation of output
 - 1-phase
 - Allocate enough large memory space for output
 - 2-phase
 - Count #non-zero of output, then allocate memory for output

	Computation cost	Memory usage	Libraries
1-phase	Low	Large	CUSP, BHSPARSE
2-phase	High	Small	cuSPARSE

SpGEMM on GPU

Massive parallelism

- Simple row/column-based parallelization causes loadimbalance
 - Largely different computation cost by row/column
- Difficulty of memory management
 - Small global memory
 - Up to 16GB (P100 GPU)
 - Hierarchical memory
 - Shared memory (fast, but only 64KB/SM on P100)

Contribution

- We propose GPU-optimized fast SpGEMM algorithm with low memory usage
 - Efficiently manage column index of output matrix and accumulate intermediate products by hash table
 - Utilize GPU's shared memory for hash table
 - Make row groups by the number of non-zero elements or intermediate products to improve load balance
 - Evaluate the performance of SpGEMM for the Sparse Matrix Collection from University Florida
 - Up to x4.3 in single precision, x4.4 in double precision
 - Memory usage is reduced by
 - 14.7% in single precision
 - 10.9% in double precision

Related work (1)

ESC Algorithm [Bell, SIAM2012]

- Expansion: Generate the list of all intermediate products
- Sorting by column and row indices
- Contraction: Accumulate intermediate products
- Each part can be executed with high parallelism
 - Whole performance is low since ESC requires large memory access, and also large memory space

BHSPARSE [Liu, IPDPS2014]

- For irregular matrices
- Binning by the number of intermediate products per row
 - Switch the algorithms of accumulation by bin
 - Heap method, bitonic ESC method, mergepath
 - Better load-balance

Related work (2)

Balanced Hash [Anh, ICS'16]

- Improve load balance
 - Worklist: pair of indices for computation of intermediate products
 - Worklist is stored on global memory
- Improve the process of accumulation
 - Use hash table
 - Fixed size of hash table on shared memory
 - Waste shared memory when the number of non-zero is small
 - When hash collision occurs, the products are added to queue
 - Store the calculated elements in the table to memory, refresh table, and then process the products in queue
 - Repeat until queue becomes empty
 - Additional memory usage and memory access to queue

Proposed Algorithm Key Points

Two-phase execution

- (1 4): Count #non-zero
 elements of output matrix
- (6 7): Calculate output matrix
- Minimize the usage of memory

(1) Count #intermediate products

(2) Divide the rows into groups by #intermediate products

(3) Count #non-zero elements

(4) Set row pointers of output matrix

(5) Memory allocation of output matrix

(6) Divide the rows into groups by #non-zero elements

(7) Compute the output matrix

- a. Calculate values and column indices on hash table
- b. Shrink the hash table
- c. Store to the memory with sorting

Proposed Algorithm Key Points

- Utilize hash table for accumulator
 - Allocated on fast shared memory
- Divide the rows into groups by #intermediate products or #non-zero elements
 - Improve load balance by appropriate thread assignment
 - Better utilization of shared memory by coordinating hash table size

Proposed Algorithm Count #intermediate products / Grouping

- Rows are divided into several groups by #intermediate products or non-zero elements
 - Improve the load-balance
 - Utilize shared memory
 - #intermediate products is upper bound of #non-zero elements
 - Counting cost of #intermediate product is relatively small

Algorithm 2 Count the number of intermediate products of i-th row

$$n_{prod} \leftarrow 0$$

for $j = rpt_A[i]$ to $rpt_A[i+1]$ do
 $n_{prod} \leftarrow n_{prod} + (rpt_B[col_A[j]+1] - rpt_B[col_A[j]])$
end for

Proposed Algorithm Count #Non-zero Elements / Compute the output

- Two-way thread assignment and memory access to input matrices for load-balance
 - Appropriate thread assignment for both dense row and sparse row
- Column indices of output matrix are managed by hash table
 - Tables are on shared memory
- CUDA kernel for each group
 - In order to execute concurrently, each kernel is assigned to different CUDA stream

Proposed Algorithm Two-ways thread Assignment -1-

PWARP/ROW: Partial warp / row

- Partial warp means a bundle of 4 threads
- 1 pwarp for each row of matrix A, and 1 thread for each nonzero element of A and corresponding row of B
- Selected for the groups with sparser rows

Algorithm 3 Count the number of non-zero elements of i-th row by PWARP/ROW

```
tid \leftarrow threadIdx\%4
for j \leftarrow rpt_A[i] to rpt_A[i+1] stride 4 do
d \leftarrow col_A[j+tid]
for k \leftarrow rpt_B[d] to rpt_B[d+1] stride 1 do
//hash operation
end for
end for
```

Proposed Algorithm Two-ways thread Assignment -2-

TB/ROW: Thread block / row

- Assign 1 thread block (TB) for each row of matrix A, 1 warp for each non-zero element of A, and 1thread for each non-zero element of B
- Selected for the groups with denser rows

Proposed Algorithm Hash Table

Key is column index of B

- if empty, add the element
 - compare-and-swap
 - Each thread counts the number of non-zero elements
- Linear probing
 - When the hash is collided, the algorithm tries next entry

Algorithm 5 Hash Algorithm

```
(Hash table is initialized: table[] \leftarrow -1)
(nz \text{ is initialized: } nz \leftarrow 0)
(k \text{ comes from Algorithm 3, 4})
key \leftarrow col_B[k]
hash \leftarrow (key * HASH\_SCAL)\%t_{size}
while true do
  if table[hash] = key then
     break
  else if table[hash] = -1 then
     old \leftarrow atomicCAS(table + hash, -1, key)
     if old = -1 then
        nz \leftarrow nz + 1
        break
     end if
   else
     hash \leftarrow (hash + 1)\% t_{size}
  end if
end while
```

Proposed Algorithm Count #non-zero elements

Accumulate the number of nonzero counted by each row

- PWARP/ROW: Utilizing warp shuffle
- TB/ROW: Accumulate by warp shuffle in warp level, and then accumulate the sum of each warp by using shared memory

Proposed Algorithm Compute the output matrix

- Calculate values and column index as well as counting #nonzero
 - Allocate another hash table for value
 - Accumulate the value by atomicAdd
- Shrink table to hold only non-zero
- Output with sorting by column index

(1) Count #intermediate products
(2) Divide the rows into groups by #intermediate products
(3) Count #non-zero elements
(4) Set row pointers of output matrix
(5) Memory allocation of output matrix
(5) Memory allocation of output matrix(6) Divide the rows into groups by #non-zero elements

Performance Evaluation

Experimental Setup

Pascal GPU Machine

- CPU : Intel Xeon CPU E5-2650 v3
- GPU: NVIDIA Tesla P100
 - SM:56
 - CUDA cores : 3584 (64[/SM])
 - Memory size : 16 [GB]
 - Memory bandwidth : 732 [GB/sec]
 - ECC : Off
 - L2 cache size : 4[MB]
- CUDA : Version 8.0
- OS : CentOS release 7.2.1511

Experimental Setup

Sparse Libraries

- cuSPARSE
 - CUDA 8.0 version
- CUSP : ESC algorithm [Dalton, 2014]
 - v0.5.1
- BHSPARSE [Liu, IPDPS2014]
 - Effective for irregular matrices
- FLOPS Performance
 - Evaluate the performance of A^2
 - #(intermediate products) * 2 / (execution time)

Matrix Data Florida Sparse Matrix Collection

Name	Row	Non-zero	Nnz /row	Max nnz / row	Intermediate product of A^2	Nnz of A^2
Protein	36,417	4,344,765	119.3	204	555,322,659	19,594,581
FEM /Spheres	83,334	6,010,480	72.1	81	463,845,030	26,539,736
FEM / Cantilever	62,451	4,007,383	64.2	78	269,486,473	17,440,029
FEM /Ship	140,874	7,813,404	55.5	102	450,639,288	24,086,412
Wind Tunnel	217,918	11,634,424	53.4	180	626,054,402	32,772,236
FEM /Harbor	46,835	2,374,001	50.7	145	156,480,259	7,900,917
QCD	49,152	1,916,928	39.0	39	74,760,192	10,911,744
FEM /Accelerator	121,192	2,624,331	21.7	81	79,883,385	18,705,069
Economics	206,500	1,273,389	6.2	44	7,556,897	6,704,899
Circuit	170,998	958,936	5.6	353	8,676,313	5,222,525
Epidemiology	525,825	2,100,225	4.0	4	8,391,680	5,245,952
webbase	1.000.005	3.105.536	3.1	4700	69.524.195	51.111.996
cage15	5,154,859	99,199,551	19.2	47	2,078,631,615	929,023,247
wb-edu	9,845,725	57,156,537	5.8	3841	1,559,579,990	630,077,764
cit-Patents	3,774,768	16,518,948	4.4	770	82,152,992	68,848,721

High-Throughput Matrix Data Low-Throughput Matrix Data Large-size Graph Data

Parameter Setting for P100 GPU

	(3) #intermediate products	(6) #non-zero elements	Assignment	Thread block size	
On global memory On shared memory	8193 -	4097 -	TB / ROW	1024	
	4097 - 8192	2049 - 4096	TB / ROW	1024	
	2049 - 4096	1025 - 2048	TB / ROW	512	
	1025 - 2048	513~1024	TB / ROW	256	
	513~1024	257 - 512	TB / ROW	128	
	33 - 512	17 - 256	TB / ROW	64	
	0 - 32	0 - 16	PWARP / ROW	512	

Performance -Single Precision-High-Throughput Matrix Data

Proposal > cuSPARSE > BHSPARSE

- Speedup is up to x2.26

Performance -Single Precision-Low-Throughput Matrix Data

- Proposal > BHSPARSE > cuSPARSE
- Dividing rows into groups improves load-balance for irregular matrices like 'webbase'
 - Speedup is up to x4.3

Performance -Double Precision-High-Throughput Matrix Data

- Similar performance trend as single precision
 - Speedup is up to x2.1 for High-Throughput
 - Speedup is up to x4.4 for Low-Throughput

Performance -Double Precision-Large-size Graph Data

- Our approach shows significant speedups for large size graph data
 - BHSPARSE cannot handle 'cage15' and 'wb-edu' because of memory shortage

Precision	Matrix	CUSP	cuSPARSE	BHSPARSE	PROPOSAL	Speedup from cuSPRASE	Speedup from BHSPARSE
Single	cage15	-	0.519	-	5.955	x11.5	-
	wb-edu	-	2.348	-	5.403	x2.4	-
	cit-Patents	0.837	0.028	0.880	3.351	x 11 9.6	x3.8
Double	cage15	-	0.491	-	5.684	x11.6	-
	wb-edu	-	2.145	-	4.618	x2.2	-
	cit-Patents	0.780	0.028	0.813	2.980	x106.8	x3.7
[GFLOPS]							

Memory Usage

Lower memory usage compared to other sparse matrix libraries for all matrix data

- Compared to cuSPARSE, reduced by 14.7% in single precision and 10.9% in double precision on average
- For the matrix data webbase, our proposal not only achieves better performance but also reduces memory usage by 67.7%

29

Conclusion

- We propose fast and memory-saving SpGEMM algorithm for GPU
 - Appropriate grouping and utilizing shared memory
 - Performance evaluation with cuSPARSE and BHSPARSE
 - Speedups are up to x4.3 in single precision and x4.4 in double precision
 - Memory usage is reduce by 14.7% in single precision and 10.9% in double precision on average
 - For Low-Throughput matrix, our algorithm achieves higher performance and reduces memory usage by 67.7%

Future work

- Evaluate on AMD GPU and Xeon Phi
- Evaluate our SpGEMM algorithm in real-world application

Acknowledgement

This work is partially supported by by JST CREST Grant Number JPMJCR1303 and JPMJCR1687

Source code of proposed SpGEMM algorithm for GPU is released under nsparse library

- https://github.com/EBD-CREST/nsparse

Backup

Performance Breakdown

- Largely reduce calculation time from cuSPARSE
- Grouping phase affects little to total performance
- On sparser matrices, cudaMalloc becomes bottleneck

