Adaptive Multi-level Blocking Optimization
for Sparse Matrix Vector Multiplication
on GPU

Yusuke Nagasaka, Akira Nukada, Satoshi Matsuoka
Tokyo Institute of Technology

Sparse Matrix Computation

e Large and sparse equations
— Generated by FEM

— Sparse matrix vector multiplication (SpMV) requires much
execution time in solving equation
* Using sparse format, which removes needless zero elements
— Indirect memory access to input vector element
» Random memory access : Frequent cache misses

— Require index of row and column for each non-zero element
» Aggravate memory boundness of Mat-vec

=> Performance degradation of SpMV

10 15

Row pointer 0 2 3 6 7 9

20

25 30 35| —>» Column id 0 2 1 0 2 4 3 2 4

40

Value 10 | 15| 20 | 25 | 30 | 35 [40 | 45 | 50
45 50

CSR Format

SpMV on Many-core Processors

* Acceleration by high parallelism and memory
bandwidth

— Small cache < Enormous executing threads

* More frequent cache misses

— Performance is strongly limited by memory
bandwidth

* Not exploiting many core processors

Sparse Format

 Compressing needless zero elements
— Storing only non-zero elements
— Reducing memory usage and computation

 Each format has variety of characteristics
— Being suited to architectures and given matrices

Memory Access to Locality of access

Memory Layout Load-balance

Matrix Data to input vector
CSR Row-major v - -
ELLPACK Column-major - - -
SELL-C-o Column-major - v -
Segmented, NUS | Column-major v - s
BCCOO (yaSpMV) Row-major s s -

Sparse Format

* Reducing total memory access is important to
alleviate the memory-boundness
— However, existing work does not reduce enough

— We should consider the access to both matrix data and
input vector elements

* Reduction of total memory access

Memory Access to Locality of access

Memory Layout Load-balance

Matrix Data to input vector
CSR Row-major v - -
ELLPACK Column-major - - -
SELL-C-o Column-major - v -
Segmented, NUS | Column-major v - s
BCCOO (yaSpMV) Row-major s \ s / \ - /

Contribution

* We propose new sparse matrix format for GPU

— Adaptive Multi-level Blocking (AMB) format

» Several optimization techniques such as division and blocking

* Aggressively reducing total memory access including both matrix
data and input vector in SpMV to improve performance

* Precisely predicting total memory access and performance of
SpMV
— For 32 matrix datasets taken from Florida sparse matrix
collection, achieve speedups of
e Up to x2.92 compared to cuSPARSE (x1.74 on average)
* Up to x1.40 compared to yaSpMV (x1.13 on average)

Adaptive Multi-level Blocking (AMB)

e Largely reducing total memory access in SpMV

* Constructed in multi-level division and blocking
— Improving the locality of the access to input vector by

dividing matrix and input vector
— Mainly focusing on compression of column index

Memory Access to Locality of access

Memory Layout Load-balance

Matrix Data to input vector
CSR Row-major v - -
ELLPACK Column-major - - -
SELL-C-0 Column-major - v -
Segmented, NUS | Column-major v - v
BCCOO (yaSpMV) Row-major s s -
AMB (Proposal) | Column-major v a4 a4

AMB (Adaptive Multi-level Blocking)

* Level 1:Column-wise Segmentation

— Improving the locality of the access to input vector
element in SpMV

— Segmentation width is less than 65536 (= 2216) columns

* For the compression of column index in the second level division
)

| —

Segmentation
— .
width

AMB (Adaptive Multi-level Blocking)

* Level 2 : Row-wise segmentation and compression

— Converting each sub-matrix to SELL-C-o

e Sorting rows by the number of non-zero elements per row
— Sorting scope (o) is limited : less than 32768 (2715)
» 0 =6 in this figure

| m—

Sorting
gl
scope (o)

1 2

#non-zero/row

Permutation 9
(Original row index)

AMB (Adaptive Multi-level Blocking)

* Level 2 : Row-wise segmentation and compression

— Converting each sub-matrix to SELL-C-o
e Row-wise division by C rows (C = 3 in this figure)

— Cis set based on architecture (C=32 in GPU case)

——

Permutation

AMB (Adaptive Multi-level Blocking)

* Level 2 : Row-wise segmentation and compression

— Converting each sub-matrix to SELL-C-o
e Converting each chunk to ELLPACK

* More memory access to CS, CL and Permutation is required
compared to original SELL-C-0 (w/o Level 1 segmentation)

Value data Column Index CS (Chunk CL Permutation
Starting offset) (Chunk Length) »

AMB (Adaptive Multi-level Blocking)

* Level 2 : Row-wise segmentation and compression

— Elimination of the empty chunk
* Removing needless elements of CS, CL and Permutation

Value data Column Index CS (Chunk CL Permutation
Starting offset) (Chunk Length) 5

AMB (Adaptive Multi-level Blocking)

* Level 2 : Row-wise segmentation and compression

— Column indices are represented by 16-bit integer
(unsigned short)

* Original index is divided by segmentation width and remainder is
stored as column index

— Quotient is stored to upper 16-bit of the ‘CL’ (Chunk Length) array

012012
02fo1j}
of o] |

Value data Column Index CS (Chunk CL Permutation
Starting offset) (Chunk Length) .

AMB (Adaptive Multi-level Blocking)

* Level 2 : Row-wise segmentation and compression
— Compression of original row index (permutation) by using
16-bit interger (0 £ 32768 (= 2715))

* Original row index is divided by sorting scope (0=8 in this figure)
and remainder is stored as permutation

— Quotient is stored to Permutation offset array (16-bit integer)

012012
op] [ofl |
o1jo2}}

Value data Column Index CS CL Permutation Permutation
offset 14

AMB (Adaptive Multi-level Blocking)

* Level 3 : Blocking

— Regarding multiple non-zero elements as one element
* Compression of contiguous column indices (block size=3 in figure)

* Large block size : Compression rate is high, but the number of
zero-filling in value array may increase

This implies

0 1 2

"

Value data Column index *°

AMB (Adaptive Multi-level Blocking)

* Level 3 : Blocking
— Compression of contiguous column indices
— Block size : 1~10 (block size=3 in the figure)

* Block size is chosen considering tradeoff between compression of
column index and zero filling in value data

Value data Column Index CS CL Permutation Permutation
offset 16

SpMV Kernel for AMB format in CUDA

* Constructed in two CUDA kernels
— Initializing the output vector with zero
— Matrix vector multiplication kernel

* One thread is assigned to each row and the result of each row is
accumulated in the output vector by atomic operation

15t Initialization Kernel 2" Matrix-Vector Multiply Kernm

0

VVVV¢V\

O O O oo

Output vector Permutation Permtﬁatiy
offset 17

Estimation of Total Memory Access
In SpMV

* Performance prediction by estimating total memory
access

— AMB format has high locality in cache level
 We can estimate total memory access including random access

2
/ nsz*(V'l'E)+nc*(2*v*c+2*c+10)+(M+N)*V \

M, N : Row size, column size

v : Byte of floating point (v=4 in single precision and v=8 in double precision)
nz, : Number of elements including zero-filling

b : Block size in third level

C : Chunk size in second level

wc : Number of chunk /

 We can predict the performance without computation
=> Utilizing for parameter tuning

18

Performance Evaluation

Experiment Environment

* TSUBAME-KFC

— GPU : NVIDIA Tesla K20X
* Memory size : 6[GB]
* Memory bandwidth : 250[GB/s]
e ECC off
* L2 cache size : 1.5[MB]
* Read-only cache size : 12[KB] * 4 / SMX

— CUDA : Version 7.0

20

Experiment Environment

e Matrix data

— The University of Florida Sparse Matrix Collection

* Selecting 32 positive definite symmetric matrices whose row sizes
are larger than 131072 (=2717)

e Evaluated sparse formats
— cuSPARSE : CSR, HYBRID, BSR (Block CSR)
— SELL-C-0
— {Segmented, Non-Uniformly-Segmented}-SELL-C-o

— yaSpMV: BCCOO (only single precision)

Performance Evaluation
SpMYV in Single-precision

* Speedups of
— X%2.92 on maximum and x1.74 on average compared to cuSPARSE

— x1.40 on maximum and x1.13 on average compared to yaSpMV

* Performance of AMB becomes worse when average number of non-zero elements
per row (nz/row) is small

mcuSPARSE ®SELL-C-o ®(S, NUS)-SELL-C-0 myaSpMV mAMB

90
50 nz/row 24
70
& 60
'l 50
T 40
H II l
N @ = &
& & n°° A '\Q% é@
C;b/ © 0\) ’5\/ \0(0 ‘%Q "00

SMALL <---------- Matrix (nz/row order) ---------- > LARGE

Performance Evaluation
SpMYV in Double precision

* Speedups of

— x1.86 on maximum and x1.29 on average compared to cuSPARSE
— x2.59 on maximum and x1.83 on average compared to CSR

Memory access to value data is larger and compression rate
becomes worse compared to single precision

mcuSPARSE ®SELL-C-0 =(S, NUS)-SELL-C-0 =mAMB

G3 _circuit offshore Dubcova3 af shell3 bmw7st 1 shipsec5 audikw_1
SMALL <---------- Matrix (nz/row order) ---------- > LARGE

50

GFLOPS
w N
o o

N
o

—_
o

o

23

Performance Evaluation
SpMYV in Single-precision

Performance of each level of AMB format

— Memory access to matrix data increases in Level 1 while
the locality of the access to input vector is improved

— Reducing memory access to matrix data in Level 2 and
Level 3 contributes the speedups

mSELL-C-o AMB (Level 1, 2 w/o compression)
AMB (Level 1, 2) ®AMB (Full Level)
90
80
70
» 60
& 50
= 40
G 30
20
10
0
X
&05\ o@ e}\(b
o ‘Q s\ é\ (\\ 6\
O(b/ O Q\} >’ ‘06\ =) ’b

SMALL <---------- Matrix (nz/row order) ---------- > LARGE

24

Total Memory Access in SpMV

* Evaluating total memory access in SpMV by using
nvprof

— Format with minimum total memory access shows best
performance of SpMV for most of matrix

ESELL-C-0 myaSpMV ®AMB (Level1,2) mAMB

G3_circuit offshore Dubcova3 af shell3 bmw7st 1 shipsec5 audikw_1
SMALL <----------- Matrix (nz/row order) ---------- > LARGE

1.2

—

o
o

Memory Traffic Ratio
compared to CSR
o o
N o

o
(N

o

better

Estimation of Total Memory Access
and Performance Prediction

* Very accurate estimation of total memory access in

SpMV with AMB format
600
g Correlation coefficient = 0.999 o
5500
3
< 400 .
o °
S 300 4
= °
T
S 200 .
8 o *
£100 "
k%)
LLI
0 "/
0 100 200 300 400 500 600

Measured Total Memory Access [MB]

26

Estimation of Total Memory Access
and Performance Prediction

Performance of SpMV depends on memory access

— Performance degradation by load-imbalance for some data
3

2.5

N

(a1
=
<
=
2
> —
= 8 °
a2 -
S 5 1.5 °
)
- g ° ®
Fe ®e
c
2 °
> [J Y
§ 0.5
L Q@

o'.’

0
0 100 200 300 400 500 600

Estimated Total Memory Access [MB] 2

Related Work (1

 CoAdELL [Maggioni, IPDPS2014]

)

— Delta between column indices is

compressed to 16-bit or 8-bit

— No compression when delta is large

 BRO format [Tang, SC13]

0123 02 |1
314|5 3111
4/5|6 — 411
01|56 o114
1157 1142

— Delta between column indices is
represented in more precise
number of bits }

— Optimized for GPU by removing o
sequentially execution

— Although BRO successfully reduces &
the memory footprint, it requires :
additional decompression schemes ¢

LOI

-
o

Column index

EBRO-ELL ®mAMB

shipsec1 consph
Matrix

pdb1HYS

28

Related Work (2)

« BCCOO (yaSpMV) [Yan, PPoPP’14]

— Storing the matrix data in extended COO with blocking the
matrix to reduce the memory usage of the index of column
and row

* Local memory such as shared memory on GPU is effectively
utilized when the computation result of each block is accumulated
in SpMV

=> Highly accelerating SpMV from existing library such as cuSPARSE
— Parameter auto-tuning mechanism

* Find best set of parameters by conversions and executions

* Large parameter space
— Cost of parameter tuning is extremely high

29

Conclusion

* To improve the performance of SpMV on GPU, we
propose AMB (Adaptive Multi-level Blocking) format
which reduces total memory access

— Multi-level division and blocking improve the locality of
the access to input vector and compresses column index

— High performance improvement from existing SpMV
libraries such as cuSPARSE and yaSpMV

e Future work

— Investigating the effectiveness of our AMB format on other
many-core processors such as AMD GPUs and Xeon Phi

Backup

Zero-filling in Value data

e Zero-filling in value data is not so many
— Table shows the result of single precision

Best block size | #zero-fill/#tnon-zero[%] | Total memory access of
(Best block size) / (block size=1) [%]

af _shell3 5 0.096 75.62
audikw_1 3 0.451 79.77
bmw7st_1 6 4.709 82.22
Dubcova3 2 21.691 99.97
G3_circuit 1 0.070 100.00
offshore 1 0.212 100.00
shipsec5 6 1.731 74.92

32

Loop unrolling

* Loop unrolling technique is used for SpMV
— Divergence effect is large on GPU

(" Block size =1)

ThreadO
Threadl
Thread2
Thread3

0
Column index

Value data
sum = 0; adr=thread id;
for(i=0;i<3;i++){
sum += value[adr] * vec[col[adr]];
adr += 4;
}

output +=sum;

(Block size =3 \

ThreadO
Threadl
Thread2
Thread3

0
Column index

Value data
sum =0; adr =thread_id
for (i=0;i<3/3;i++){

c =col[adr/ 3 + adr % 4];
sum += value[adr] * vec|c];

sum += value[adr + 4 * 1] * vec[c + 1];
sum += value[adr + 4 * 2] * vec[c + 2];
adr +=4;

}

\ J

output +=sum;

_

Total Memory Access and Execution time

e Exectution time depends on total memory access in
SELL-C- o, yaSpMV and AMB

— AMB also achieves high throughput although total memory
access is less than other formats

CSR e SELL-C-0 ®yaSpMV *AMB

-
o

Execution Time of SpMV [msec]

o - N w » (&) » ~ (o¢] ©

0 100 200 300 400 500 600 700 800 900 1000
Measure d Memory Traffic [MB]

